Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961523

RESUMO

Building synaptic connections, which are often far from the soma, requires coordinating a host of cellular activities from transcription to protein turnover, placing a high demand on intracellular communication. Membrane contact sites (MCSs) formed between cellular organelles have emerged as key signaling hubs for coordinating an array of cellular activities. We have found that the endoplasmic reticulum (ER) MCS tethering protein PDZD8 is required for activity-dependent synaptogenesis. PDZD8 is sufficient to drive ectopic synaptic bouton formation through an autophagy-dependent mechanism and required for basal synapse formation when autophagy biogenesis is limited. PDZD8 functions at ER-late endosome/lysosome (LEL) MCSs to promote lysosome maturation and accelerate autophagic flux. Mutational analysis of PDZD8's SMP domain further suggests a role for lipid transfer at ER-LEL MCSs. We propose that PDZD8-dependent lipid transfer from ER to LELs promotes lysosome maturation to increase autophagic flux during periods of high demand, including activity-dependent synapse formation.

2.
EMBO Rep ; 24(10): e56808, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642556

RESUMO

Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.


Assuntos
Saccharomyces cerevisiae , tRNA Metiltransferases , Animais , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metilação , Saccharomyces cerevisiae/genética , Uridina/química , Uridina/genética , Uridina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
J Vis Exp ; (181)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35311809

RESUMO

The activation of phospholipase Cß (PLCß) is an essential step during sensory transduction in Drosophila photoreceptors. PLCß activity results in the hydrolysis of the membrane lipid phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] leading ultimately to the activation of transient receptor potential (TRP) and TRP like (TRPL) channels. The activity of PLCß also leads subsequently to the generation of many lipid species several of which have been proposed to play a role in TRP and TRPL activation. In addition, several classes of lipids have been proposed to play key roles in organizing the cell biology of photoreceptors to optimize signaling reactions for optimal sensory transduction. Historically, these discoveries have been driven by the ability to isolate Drosophila mutants for enzymes that control the levels of specific lipids and perform analysis of photoreceptor physiology in these mutants. More recently, powerful mass spectrometry methods for isolation and quantitative analysis of lipids with high sensitivity and specificity have been developed. These are particularly suited for use in Drosophila where lipid analysis is now possible from photoreceptors without the need for radionuclide labeling. In this article, the conceptual and practical considerations in the use of lipid mass spectrometry for the robust, sensitive, and accurate quantitative assessment of various signaling lipids in Drosophila photoreceptors are covered. Along with existing methods in molecular genetics and physiological analysis such lipid is likely to enhance the power of photoreceptors as a model system for discoveries in biology.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Espectrometria de Massas , Fosfatidilinositóis , Células Fotorreceptoras de Invertebrados/fisiologia
6.
Front Cell Dev Biol ; 7: 83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231646

RESUMO

Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.

7.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30369483

RESUMO

Phosphatidylcholine (PC)-specific phospholipase D (PLD) hydrolyzes the phosphodiester bond of the PC to generate phosphatidic acid (PA) and regulates several subcellular functions. Mammalian genomes contain two genes encoding distinct isoforms of PLD in contrast with invertebrate genomes that include a single PLD gene. However, the significance of two genes within a genome encoding the same biochemical activity remains unclear. Recently, loss of function in the only PLD gene in Drosophila was reported to result in reduced PA levels and a PA-dependent collapse of the photoreceptor plasma membrane due to defects in vesicular transport. Phylogenetic analysis reveals that human PLD1 (hPLD1) is evolutionarily closer to dPLD than human PLD2 (hPLD2). In the present study, we expressed hPLD1 and hPLD2 in Drosophila and found that while reconstitution of hPLD1 is able to completely rescue retinal degeneration in a loss of function dPLD mutant, hPLD2 was less effective in its ability to mediate a rescue. Using a newly developed analytical method, we determined the acyl chain composition of PA species produced by each enzyme. While dPLD was able to restore the levels of most PA species in dPLD3.1 cells, hPLD1 and hPLD2 each were unable to restore the levels of a subset of unique species of PA. Finally, we found that in contrast with hPLD2, dPLD and hPLD1 are uniquely distributed to the subplasma membrane region in photoreceptors. In summary, hPLD1 likely represents the ancestral PLD in mammalian genomes while hPLD2 represents neofunctionalization to generate PA at distinct subcellular membranes.


Assuntos
Mutação com Perda de Função , Fosfolipase D/genética , Degeneração Retiniana/genética , Animais , Linhagem Celular , Drosophila , Expressão Gênica , Humanos , Fosfolipase D/análise , Fosfolipase D/metabolismo , Filogenia , Degeneração Retiniana/metabolismo , Espectrometria de Massas em Tandem , Transgenes
8.
J Cell Sci ; 131(15)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29980590

RESUMO

The activation of phospholipase C (PLC) is a conserved mechanism of receptor-activated cell signaling at the plasma membrane. PLC hydrolyzes the minor membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], and continued signaling requires the resynthesis and availability of PI(4,5)P2 at the plasma membrane. PI(4,5)P2 is synthesized by the phosphorylation of phosphatidylinositol 4-phosphate (PI4P). Thus, a continuous supply of PI4P is essential to support ongoing PLC signaling. While the enzyme PI4KA has been identified as performing this function in cultured mammalian cells, its function in the context of an in vivo physiological model has not been established. In this study, we show that, in Drosophila photoreceptors, PI4KIIIα activity is required to support signaling during G-protein-coupled PLC activation. Depletion of PI4KIIIα results in impaired electrical responses to light, and reduced plasma membrane levels of PI4P and PI(4,5)P2 Depletion of the conserved proteins Efr3 and TTC7 [also known as StmA and L(2)k14710, respectively, in flies], which assemble PI4KIIIα at the plasma membrane, also results in an impaired light response and reduced plasma membrane PI4P and PI(4,5)P2 levels. Thus, PI4KIIIα activity at the plasma membrane generates PI4P and supports PI(4,5)P2 levels during receptor activated PLC signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Membrana Celular/metabolismo , Drosophila , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais
9.
Lab Chip ; 18(14): 2087-2098, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29897358

RESUMO

Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 µm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.


Assuntos
Acústica , Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Dimetilpolisiloxanos , Desenho de Equipamento , Impressão Tridimensional
10.
J Cell Sci ; 131(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29180517

RESUMO

Phosphatidylinositol transfer proteins (PITPs) are essential regulators of PLC signalling. The PI transfer domain (PITPd) of multi-domain PITPs is reported to be sufficient for in vivo function, questioning the relevance of other domains in the protein. In Drosophila photoreceptors, loss of RDGBα, a multi-domain PITP localized to membrane contact sites (MCSs), results in multiple defects during PLC signalling. Here, we report that the PITPd of RDGBα does not localize to MCSs and fails to support function during strong PLC stimulation. We show that the MCS localization of RDGBα depends on the interaction of its FFAT motif with dVAP-A. Disruption of the FFAT motif (RDGBFF/AA) or downregulation of dVAP-A, both result in mis-localization of RDGBα and are associated with loss of function. Importantly, the ability of the PITPd in full-length RDGBFF/AA to rescue mutant phenotypes was significantly worse than that of the PITPd alone, indicating that an intact FFAT motif is necessary for PITPd activity in vivo Thus, the interaction between the FFAT motif and dVAP-A confers not only localization but also intramolecular regulation on lipid transfer by the PITPd of RDGBα. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Drosophila , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Ligação Proteica
11.
Elife ; 52016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27848911

RESUMO

During illumination, the light-sensitive plasma membrane (rhabdomere) of Drosophila photoreceptors undergoes turnover with consequent changes in size and composition. However, the mechanism by which illumination is coupled to rhabdomere turnover remains unclear. We find that photoreceptors contain a light-dependent phospholipase D (PLD) activity. During illumination, loss of PLD resulted in an enhanced reduction in rhabdomere size, accumulation of Rab7 positive, rhodopsin1-containing vesicles (RLVs) in the cell body and reduced rhodopsin protein. These phenotypes were associated with reduced levels of phosphatidic acid, the product of PLD activity and were rescued by reconstitution with catalytically active PLD. In wild-type photoreceptors, during illumination, enhanced PLD activity was sufficient to clear RLVs from the cell body by a process dependent on Arf1-GTP levels and retromer complex function. Thus, during illumination, PLD activity couples endocytosis of RLVs with their recycling to the plasma membrane thus maintaining plasma membrane size and composition.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Endocitose/efeitos da radiação , Fosfolipase D/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Membrana Celular/efeitos da radiação , Membrana Celular/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Expressão Gênica , Teste de Complementação Genética , Guanosina Trifosfato/metabolismo , Luz , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/genética , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Células Fotorreceptoras de Invertebrados/ultraestrutura , Rodopsina/genética , Rodopsina/metabolismo , Visão Ocular/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
12.
Genetics ; 203(1): 369-85, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26920756

RESUMO

The functional requirement of adapter protein 2 (AP2) complex in synaptic membrane retrieval by clathrin-mediated endocytosis is not fully understood. Here we isolated and functionally characterized a mutation that dramatically altered synaptic development. Based on the aberrant neuromuscular junction (NMJ) synapse, we named this mutation angur (a Hindi word meaning "grapes"). Loss-of-function alleles of angur show more than twofold overgrowth in bouton numbers and a dramatic decrease in bouton size. We mapped the angur mutation to σ2-adaptin, the smallest subunit of the AP2 complex. Reducing the neuronal level of any of the subunits of the AP2 complex or disrupting AP2 complex assembly in neurons phenocopied the σ2-adaptin mutation. Genetic perturbation of σ2-adaptin in neurons leads to a reversible temperature-sensitive paralysis at 38°. Electrophysiological analysis of the mutants revealed reduced evoked junction potentials and quantal content. Interestingly, high-frequency nerve stimulation caused prolonged synaptic fatigue at the NMJs. The synaptic levels of subunits of the AP2 complex and clathrin, but not other endocytic proteins, were reduced in the mutants. Moreover, bone morphogenetic protein (BMP)/transforming growth factor ß (TGFß) signaling was altered in these mutants and was restored by normalizing σ2-adaptin in neurons. Thus, our data suggest that (1) while σ2-adaptin facilitates synaptic vesicle (SV) recycling for basal synaptic transmission, its activity is also required for regenerating SVs during high-frequency nerve stimulation, and (2) σ2-adaptin regulates NMJ morphology by attenuating TGFß signaling.


Assuntos
Subunidades sigma do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Clatrina/metabolismo , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Potenciais Evocados , Mutação , Junção Neuromuscular/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA