Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18966, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152176

RESUMO

We investigate electric dipole spin resonance (EDSR) induced by an oscillating electric field within a system of double quantum dots formed electrostatically in monolayer phosphorene. Apart from the observed anisotropy of effective masses, phosphorene has been predicted to exhibit anisotropic spin-orbit coupling. Here, we examine a system consisting of two electrons confined in double quantum dots. A single-band effective Hamiltonian together with the configuration interaction theory is implemented to simulate the time evolution of the ground state. We examine spin flips resulting from singlet-triplet transitions driven by external AC electric fields, both near and away from the Pauli blockade regime, revealing fast sub-nanosecond transition times. Furthermore, we analyze the impact of anisotropy by comparing dots arranged along a different crystal axis. The sub-harmonic multi-photon transitions and Landau-Zener-Stückelberg-Majorana transitions are discussed. We show modulation of spin-like and charge-like characteristics of the qubit through potential detuning.

2.
Sci Rep ; 13(1): 18796, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914768

RESUMO

We consider an array of four quantum dots defined in phosphorene containing three excess electrons, i.e., in the conditions of near half filling when itinerant Nagaoka ferromagnetism is expected to appear in a square array with isotropic interdot hopping. The interdot hopping in the array arranged in a square inherits the anisotropy from the form of the phosphorene conduction band. We apply the configuration interaction method for discussion of the appearance and stability of the spin-polarized ground state and discuss the compensation of the effective mass anisotropy by the geometry of the quantum dot array. Our study shows strong stability of Nagaoka ferromagnetism for optimized geometry of the array, with the Nagaoka gap as large as ∼ 230 µeV. A phase diagram for the ground-state spin ordering versus the geometric parameters of the array is presented. We study the suppression of the ferromagnetism in a transition of the [Formula: see text] array to a quasi-1D chain and indicate that the shift of one of the quantum dots away from the array center is enough to transform the system to a quantum dot chain. A shift in the zigzag crystal direction induces the low-spin ground state more effectively than a shift along the armchair direction. We also discuss the robustness of the spin ordering against detuning one of the dots. The ferromagnetic ground-state survives as long as the detuning is not large enough to trap one of the electrons within a single quantum dot (for positive detuning) or remove one of the quantum dots of the accessible energy range (for negative detuning).

3.
Sci Rep ; 13(1): 9707, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322169

RESUMO

We study clusters of vortices for Wigner molecules formed in the laboratory frame induced by anisotropy of the external potential or electron effective mass. For anisotropic systems the ground-state vortex structure undergoes a continuous evolution when the magnetic field is varied in contrast to isotropic systems where it changes rapidly at angular momentum transitions. In fractional quantum Hall conditions the additional vortices first appear on the edges of the confined system far from the axis of a linear Wigner molecule and then approach the electron positions in growing magnetic field. For an isotropic mass the vortices tend to stay at the line perpendicular to the Wigner molecule axis and pass to the axis for the lowest Landau level filling factor of [Formula: see text]. In phosphorene the behaviour of the vortices is influenced by a strong anisotropy of the electron effective mass. The vortices are stabilized off the axis of the molecule when it is oriented along the armchair crystal direction. For the molecule oriented along the zigzag direction the vortices are transfered to the molecule axis already at [Formula: see text]. The transfer is associated with an antivortex creation and annihilation near the electron position.


Assuntos
Elétrons , Laboratórios , Anisotropia , Campos Magnéticos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA