Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33285783

RESUMO

This paper presents the assessment of fatigue crack growth rate for dual-phase steel under spectrum loading based on entropy generation. According to the second law of thermodynamics, fatigue crack growth is related to entropy gain because of its irreversibility. In this work, the temperature evolution and crack length were simultaneously measured during fatigue crack growth tests until failure to ensure the validity of the assessment. Results indicated a significant correlation between fatigue crack growth rate and entropy. This relationship is the basis in developing a model that can determine the characteristics of fatigue crack growth rates, particularly under spectrum loading. Predictive results showed that the proposed model can accurately predict the fatigue crack growth rate under spectrum loading in all cases. The root mean square error in all cases is 10-7 m/cycle. In conclusion, entropy generation can accurately predict the fatigue crack growth rate of dual-phase steels under spectrum loading.

2.
Phys Chem Chem Phys ; 17(38): 25494-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365098

RESUMO

We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA