Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140012

RESUMO

Hyaluronic acid (HA) nanogels are a versatile class of nanomaterials with specific properties, such as biocompatibility, hygroscopicity, and biodegradability. HA nanogels exhibit excellent colloidal stability and high encapsulation capacity, making them promising tools for a wide range of biomedical applications. HA nanogels can be fabricated using various methods, including polyelectrolyte complexation, self-assembly, and chemical crosslinking. The fabrication parameters can be tailored to control the physicochemical properties of HA nanogels, such as size, shape, surface charge, and porosity, enabling the rational design of HA nanogels for specific applications. Stimulus-responsive nanogels are a type of HA nanogels that can respond to external stimuli, such as pH, temperature, enzyme, and redox potential. This property allows the controlled release of encapsulated therapeutic agents in response to specific physiological conditions. HA nanogels can be engineered to encapsulate a variety of therapeutic agents, such as conventional drugs, genes, and proteins. They can then be delivered to target tissues with high efficiency. HA nanogels are still under development, but they have the potential to become powerful tools for a wide range of theranostic or solely therapeutic applications, including anticancer therapy, gene therapy, drug delivery, and bioimaging.

2.
Sci Rep ; 13(1): 14102, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644086

RESUMO

Asiatic acid (AA) and asiaticoside, pentacyclic triterpenoid compounds derived from Centella asiatica, are known for their biological effects in promoting type I collagen synthesis and inducing osteogenesis of stem cells. However, their applications in regenerative medicine are limited due to their low potency and poor aqueous solubility. This work aimed to evaluate the osteogenic induction activity of AA derivatives in human periodontal ligament stem cells (hPDLSCs) in vitro. Four compounds were synthesised, namely 501, 502, 503, and 506. AA was used as the control. The 502 exhibited low water solubility, while the 506 compound showed the highest. The cytotoxicity analysis demonstrated that 503 caused significant deterioration in cell viability, while other derivatives showed no harmful effect on hPDLSCs. The dimethyl aminopropyl amine derivative of AA, compound 506, demonstrated a relatively high potency in inducing osteogenic differentiation. An elevated mRNA expression of osteogenic-related genes, BMP2, WNT3A, ALP, OSX and IBSP was observed with 506. Additionally, the expression of BMP-2 protein was enhanced with increasing dose of 506, and the effect was pronounced when the Erk signalling molecule was inhibited. The 506 derivative was proposed for the promotion of osteogenic differentiation in hPDLSCs by upregulating BMP2 via the Erk signalling pathway. The 506 molecule showed promise in bone tissue regeneration.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Triterpenos Pentacíclicos/farmacologia , Osso e Ossos
3.
Polymers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433112

RESUMO

Tissues engineering has gained a lot of interest, since this approach has potential to restore lost tooth-supporting structures, which is one of the biggest challenges for periodontal treatment. In this study, we aimed to develop an in situ hydrogel that could conceivably support and promote the regeneration of lost periodontal tissues. The hydrogel was fabricated from methacrylated hyaluronic acid (MeHA). Fragment/short-chain hyaluronic acid (sHA) was incorporated in this hydrogel to encourage the bio-synergistic effects of two different molecular weights of hyaluronic acid. The physical properties of the hydrogel system, including gelation time, mechanical profile, swelling and degrading behavior, etc., were tested to assess the effect of incorporated sHA. Additionally, the biological properties of the hydrogels were performed in both in vitro and in vivo models. The results revealed that sHA slightly interfered with some behaviors of networking systems; however, the overall properties were not significantly changed compared to the base MeHA hydrogel. In addition, all hydrogel formulations were found to be compatible with oral tissues in both in vitro and in vivo models. Therefore, this HA-based hydrogel could be a promising delivery system for low molecular weight macromolecules. Further, this approach could be translated into the clinical applications for dental tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA