Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Pharm ; 20(11): 5739-5752, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37843033

RESUMO

Polymerized human hemoglobin (PolyhHb) has shown promise in preclinical hemorrhagic shock settings. Different synthetic and purification schemes can control the size of PolyhHbs, yet research is lacking on the impact of polymerized hemoglobin size on tissue oxygenation following hemorrhage and resuscitation in specialized animal models that challenge their resuscitative capabilities. Pre-existing conditions that compromise the vasculature and end organs, such as the liver, may limit the effectiveness of resuscitation and exacerbate the toxicity of these molecules, which is an important but minimally explored therapeutic dimension. In this study, we compared the effective oxygen delivery of intermediate molecular weight PolyhHb (PolyhHb-B3; 500-750 kDa) to high molecular weight PolyhHb (PolyhHb-B4; 750 kDa-0.2 µm) for resuscitative effectiveness in guinea pig models subjected to hemorrhagic shock. We evaluated how the size of PolyhHb impacts hemodynamics and tissue oxygenation in normal guinea pigs and guinea pigs on an atherogenic diet. We observed that while PolyhHb-B3 and -B4 equivalently restore hemodynamic parameters of normal-dieted guinea pigs, high-fat-dieted guinea pigs resuscitated with PolyhHb-B4 have lower mean arterial pressures, impaired tissue oxygenation, and higher plasma lactate levels than those receiving PolyhHb-B3. We characterized the plasma of these animals following resuscitation and found that despite similar oxygen delivery kinetics, circulating PolyhHb-B3 and -B4 demonstrated a size-dependent increase in the plasma viscosity, consistent with impaired perfusion in the PolyhHb-B4 transfusion group. We conclude that intermediate-sized PolyhHbs (such as -B3) are ideal for further research given the effective resuscitation of hemorrhagic shock based on tissue oxygenation in hypercholesterolemic guinea pigs.


Assuntos
Hipercolesterolemia , Choque Hemorrágico , Humanos , Cobaias , Animais , Choque Hemorrágico/tratamento farmacológico , Hipercolesterolemia/tratamento farmacológico , Oxigênio , Hemodinâmica , Hemoglobinas
2.
Front Physiol ; 14: 1246910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719461

RESUMO

Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.

3.
Clin Appl Thromb Hemost ; 29: 10760296231186144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469147

RESUMO

Aberrant coagulation in sickle cell disease (SCD) is linked to extracellular vesicle (EV) exposure. However, there is no consensus on the contributions of small EVs (SEVs) and large EVs (LEVs) toward underlying coagulopathy or on their molecular cargo. The present observational study compared the thrombin potential of SEVs and LEVs isolated from the plasma of stable pediatric and adult SCD patients. Further, EV lipid and protein contents were analyzed to define markers consistent with activation of thrombin and markers of underlying coagulopathy. Results suggested that LEVs-but not SEVs-from pediatrics and adults similarly enhanced phosphatidylserine (PS)-dependent thrombin generation, and cell membrane procoagulant PS (18:0;20:4 and 18:0;18:1) were the most abundant lipids found in LEVs. Further, LEVs showed activated coagulation in protein pathway analyses, while SEVs demonstrated high levels of cholesterol esters and a protein pathway analysis that identified complement factors and inflammation. We suggest that thrombin potential of EVs from both stable pediatric and adult SCD patients is similarly dependent on size and show lipid and protein contents that identify underlying markers of coagulation and inflammation.


Assuntos
Anemia Falciforme , Vesículas Extracelulares , Humanos , Adulto , Criança , Trombina/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Inflamação/metabolismo , Lipídeos
4.
Biomacromolecules ; 24(4): 1855-1870, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36877888

RESUMO

Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 µm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Humanos , Animais , Cobaias , Hemoglobinas/química , Oxigênio/metabolismo , Polimerização , Substitutos Sanguíneos/farmacologia , Eritrócitos/metabolismo
5.
Sci Rep ; 12(1): 22191, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564503

RESUMO

Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.


Assuntos
COVID-19 , Vesículas Extracelulares , Trombose , Humanos , Trombina/metabolismo , COVID-19/complicações , Vesículas Extracelulares/metabolismo , Coagulação Sanguínea , Trombose/metabolismo
6.
J Cardiothorac Vasc Anesth ; 36(8 Pt A): 2473-2482, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35094925

RESUMO

OBJECTIVES: To examine the pharmacokinetics (PK) and pharmacodynamics of a tranexamic (TXA) regimen designed for cardiac surgery with cardiopulmonary bypass (CPB). DESIGN: A pilot study quantifying TXA concentrations, fibrinolysis markers, and a plasmin- generation (PG) assay. For comparison, PG assay was performed on pooled normal plasma (PNP) with varying TXA concentrations. SETTING: A single-center, tertiary, academic medical center. PARTICIPANTS: Twenty patients undergoing cardiac surgery with CPB for valve surgery and/or coronary artery bypass grafting. INTERVENTION: TXA 100 mg/h infusion for 5 hours starting before incision; 1 g TXA in CPB prime and 1 g TXA at CPB end prior to heparin reversal. MEASUREMENTS AND MAIN RESULTS: The PK fit a 2-compartment disposition model. TXA concentrations were above 15 mg/L in all patients during CPB through 2 hours post-TXA infusion. During and after CPB, the TXA regimen decreased the median peak PG by 60% (95% confidence interval [CI], 56%-62%). Lowest median peak PG occurred 15 minutes postprotamine. Peak median D-dimer level of 1.24 (0.95-1.71; 95% CI) mg/L occurred at 15 minutes postprotamine and baseline-adjusted ΔD dimer correlated with increased CPB time (p = 0.004) and lower TXA level (p = 0.001). The median 24-hour chest tube output was 447 (330-664; 95% CI) mL. PG assay on PNP revealed a plateau inhibition at 5 mM TXA (786 mg/L). CONCLUSIONS: This regimen, with total perioperative dose of 2.5 grams, provided TXA concentrations above 15 mg/L for all patients from CPB initiation through 2 hours post-TXA. PG was significantly inhibited (p < 0.0001) during and after CPB, with maximum inhibition measured at 15 minutes after protamine administration.


Assuntos
Antifibrinolíticos , Procedimentos Cirúrgicos Cardíacos , Ácido Tranexâmico , Ponte Cardiopulmonar/efeitos adversos , Fibrinolisina , Humanos , Projetos Piloto
7.
Haemophilia ; 28(1): 183-190, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735039

RESUMO

BACKGROUND: Heparin management in hemophilia A (HA) patients with a factor VIII (FVIII) inhibitor can be challenging due to severe activated clotting time (ACT) prolongations. It is important to better understand the impact of emicizumab, a FVIII mimetic on ACT, and tissue factor (TF)-based coagulation assays. METHODS: Whole blood from 18 patients undergoing cardiopulmonary bypass (CPB) were mixed in vitro with pooled normal plasma, FVIII-deficient or FVIII-inhibitor plasma to affect functional FVIII levels. ACTs and heparin concentration by protamine titration were measured in whole blood mixture with/without emicizumab (50-100 µg/ml). Thrombin generation and plasmin generation were measured in the patient's plasma mixed with normal plasma or FVIII-inhibitor plasma to assess the impact of emicizumab under low TF activation. RESULTS: FVIII inhibitors prolonged ACTs by 2.2-fold compared to those in normal plasma mixture at baseline. During CPB, ACTs in normal plasma mixture, and FVIII-deficient mixture were in 400s, but ACTs reached 900s in FVIII-inhibitor mixture. Emicizumab shortened ACTs by up to 100s in normal plasma mixture, and FVIII-deficient mixtures. ACTs remained over 600s in FVIII-inhibitor mixture, despite adding emicizumab at 100 µg/ml. Heparin concentration measured by TF-based protamine titration was unaffected. Emicizumab enhanced thrombin peak in the presence of FVIII inhibitors, whereas plasmin generation was mainly affected by thrombin generation, and systemic use of ɛ-aminocaproic acid. CONCLUSIONS: FVIII inhibitors extensively prolong ACTs in heparinized whole blood, and clinical levels of emicizumab partially reverse ACT values. Protamine titration should be considered for optimal heparin monitoring in emicizumab-treated patients with FVIII inhibitors.


Assuntos
Anticorpos Biespecíficos , Hemofilia A , Anticorpos Monoclonais Humanizados , Testes de Coagulação Sanguínea , Fator VIII , Hemofilia A/tratamento farmacológico , Humanos
8.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571942

RESUMO

The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. The present large study sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on plasma from acutely ill patients collected while in the emergency department, at admission, or during hospitalization. Lipidomics analyses were also performed on COVID-19-positive or -negative subjects with the lowest and highest body mass index (n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged as highly relevant markers of disease severity, progression, and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for mechanistic follow-up studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.


Assuntos
COVID-19/metabolismo , Prognóstico , Doença Aguda , Adulto , Aminoácidos/sangue , Índice de Massa Corporal , Carnitina/análogos & derivados , Carnitina/sangue , Estudos de Coortes , Ácidos Graxos/sangue , Feminino , Humanos , Cinurenina/sangue , Aprendizado de Máquina , Metabolômica , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Triptofano/sangue
9.
Res Sq ; 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34013258

RESUMO

The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. Exploratory studies evaluating the impact of COVID-19 infection on the plasma metabolome have been performed, often with small numbers of patients, and with or without relevant control data; however, determining the impact of biological and clinical variables remains critical to understanding potential markers of disease severity and progression. The present large study, including relevant controls, sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831), testing positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on 831 plasma samples from acutely ill patients while in the emergency department, at admission, and during hospitalization. We then performed additional lipidomics analyses of the 60 subjects with the lowest and highest body mass index, either COVID-19 positive or negative. Omics data were correlated to detailed data on patient characteristics and clinical laboratory assays measuring coagulation, hematology and chemistry analytes. Significant changes in arginine/proline/citrulline, tryptophan/indole/kynurenine, fatty acid and acyl-carnitine metabolism emerged as highly relevant markers of disease severity, progression and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half yielding ~ 78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for follow-up mechanistic studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.

10.
Hum Mol Genet ; 30(11): 1020-1029, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33856033

RESUMO

Repeat-associated non-ATG (RAN) proteins have been reported in 11 microsatellite expansion disorders but the factors that allow RAN translation to occur and the effects of different repeat motifs and alternative AUG-like initiation codons are unclear. We studied the mechanisms of RAN translation across myotonic dystrophy type 2 (DM2) expansion transcripts with (CCUG) or without (CAGG) efficient alternative AUG-like codons. To better understand how DM2 LPAC and QAGR RAN proteins are expressed, we generated a series of CRISPR/Cas9-edited HEK293T cell lines. We show that LPAC and QAGR RAN protein levels are reduced in protein kinase R (PKR)-/- and PKR-like endoplasmic reticulum kinase (PERK)-/- cells, with more substantial reductions of CAGG-encoded QAGR in PKR-/- cells. Experiments using mutant eIF2α-S51A HEK293T cells show that p-eIF2α is required for QAGR production. In contrast, LPAC levels were only partially reduced in these cells, suggesting that both non-AUG and close-cognate initiation occur across CCUG RNAs. Overexpression of the alternative initiation factor eIF2A increases LPAC and QAGR protein levels but, notably, has a much larger effect on QAGR expressed from CAGG-expansion RNAs that lack efficient close-cognate codons. The effects of eIF2A on increasing LPAC are consistent with previous reports that eIF2A affects CUG-initiation translation. The observation that eIF2A also increases QAGR proteins is novel because CAGG expansion transcripts do not contain CUG or similarly efficient close-cognate AUG-like codons. For QAGR but not LPAC, the eIF2A-dependent increases are not seen when p-eIF2α is blocked. These data highlight the differential regulation of DM2 RAN proteins and eIF2A as a potential therapeutic target for DM2 and other RAN diseases.


Assuntos
Fator de Iniciação 2 em Eucariotos/genética , Distrofia Miotônica/genética , eIF-2 Quinase/genética , Sistemas CRISPR-Cas/genética , Expansão das Repetições de DNA/genética , Células HEK293 , Humanos , Repetições de Microssatélites/genética , Distrofia Miotônica/fisiopatologia , Biossíntese de Proteínas/genética
11.
Front Med (Lausanne) ; 8: 817305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087853

RESUMO

Aging and obesity independently contribute toward an endothelial dysfunction that results in an imbalanced VWF to ADAMTS13 ratio. In addition, plasma thrombin and plasmin generation are elevated and reduced, respectively, with increasing age and also with increasing body mass index (BMI). The severity risk of Corona Virus Disease 2019 (COVID-19) increases in adults older than 65 and in individuals with certain pre-existing health conditions, including obesity (>30 kg/m2). The present cross-sectional study focused on an analysis of the VWF/ADAMTS13 axis, including measurements of von Willebrand factor (VWF) antigen (VWF:AG), VWF collagen binding activity (VWF:CBA), Factor VIII antigen, ADAMTS13 antigen, and ADAMTS13 activity, in addition to thrombin and plasmin generation potential, in a demographically diverse population of COVID-19 negative (-) (n = 288) and COVID-19 positive (+) (n = 543) patient plasmas collected at the time of hospital presentation. Data were analyzed as a whole, and then after dividing patients by age (<65 and ≥65) and independently by BMI [<18.5, 18.5-24.9, 25-29.9, >30 (kg/m2)]. These analyses suggest that VWF parameters (i.e., the VWF/ADAMTS13 activity ratio) and thrombin and plasmin generation differed in COVID-19 (+), as compared to COVID-19 (-) patient plasma. Further, age (≥65) more than BMI contributed to aberrant plasma indicators of endothelial coagulopathy. Based on these findings, evaluating both the VWF/ADAMTS13 axis, along with thrombin and plasmin generation, could provide insight into the extent of endothelial dysfunction as well as the plasmatic imbalance in coagulation and fibrinolysis potential, particularly for at-risk patient populations.

12.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375718

RESUMO

Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.


Assuntos
Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/metabolismo , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Homeostase , Transporte Biológico , Biomarcadores/metabolismo , Transtornos da Coagulação Sanguínea/terapia , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Óxido Nítrico/metabolismo , Oxirredução
13.
PLoS One ; 12(3): e0172189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28248968

RESUMO

Transglutaminases (TGMs) catalyze Ca2+-dependent transamidation of proteins with specified roles in blood clotting (F13a) and in cornification (TGM1, TGM3). The ubiquitous TGM2 has well described enzymatic and non-enzymatic functions but in-spite of numerous studies its physiological function in humans has not been defined. We compared data on non-synonymous single nucleotide variations (nsSNVs) and loss-of-function variants on TGM1-7 and F13a from the Exome aggregation consortium dataset, and used computational and biochemical analysis to reveal the roles of damaging nsSNVs of TGM2. TGM2 and F13a display rarer damaging nsSNV sites than other TGMs and sequence of TGM2, F13a and TGM1 are evolutionary constrained. TGM2 nsSNVs are predicted to destabilize protein structure, influence Ca2+ and GTP regulation, and non-enzymatic interactions, but none coincide with conserved functional sites. We have experimentally characterized six TGM2 allelic variants detected so far in homozygous form, out of which only one, p.Arg222Gln, has decreased activities. Published exome sequencing data from various populations have not uncovered individuals with homozygous loss-of-function variants for TGM2, TGM3 and TGM7. Thus it can be concluded that human transglutaminases differ in harboring damaging variants and TGM2 is under purifying selection suggesting that it may have so far not revealed physiological functions.


Assuntos
Alelos , Bases de Dados de Proteínas , Evolução Molecular , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Transglutaminases/química , Transglutaminases/genética , Substituição de Aminoácidos , Cálcio/química , Cálcio/metabolismo , Estabilidade Enzimática/genética , Fator XIIIa/química , Fator XIIIa/genética , Fator XIIIa/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/metabolismo
14.
Amino Acids ; 49(3): 605-614, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27627884

RESUMO

Transglutaminase 2 (TGM2) is a unique protein of a nine member family with several enzymatic and non-enzymatic activities and interacting partners. Its physiological and pathological roles, however, are not fully understood. Comparative genomic and computational analysis reported here have revealed phylogenetic changes of TGM2 resulting in novel amino acid clusters in humans and other primates, which may impact secondary structure and increase protein stability. These clusters are located in intrinsically disordered regions and via short linear motifs influence interactions with TGM2 partners directly, or through post-translation modification (phosphorylation and N-glycosylation sites). Our data shed new light on the structural background and evolution of TGM2 multi-functionality and points to so far unrevealed biological roles of the enzyme.


Assuntos
Aminoácidos/química , Evolução Molecular , Proteínas de Ligação ao GTP/química , Proteínas Intrinsicamente Desordenadas/química , Processamento de Proteína Pós-Traducional , Transglutaminases/química , Motivos de Aminoácidos , Aminoácidos/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Proteínas de Ligação ao GTP/metabolismo , Glicosilação , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteína 2 Glutamina gama-Glutamiltransferase , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Transglutaminases/metabolismo
15.
Anal Biochem ; 505: 36-42, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27131890

RESUMO

Transglutaminase 2 (TG2) is a ubiquitously expressed multifunctional protein with Ca(2+)-dependent transamidase activity forming protease-resistant N(ε)-(γ-glutamyl) lysine crosslinks between proteins. It can also function as an isopeptidase cleaving the previously formed crosslinks. The biological significance of this activity has not been revealed yet, mainly because of the lack of a protein-based method for its characterization. Here we report the development of a novel kinetic method for measuring isopeptidase activity of human TG2 by monitoring decrease in the fluorescence polarization of a protein substrate previously formed by crosslinking fluorescently labeled glutamine donor FLpepT26 to S100A4 at a specific lysine residue. The developed method could be applied to test mutant enzymes and compounds that influence isopeptidase activity of TG2.


Assuntos
Carbono-Nitrogênio Liases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Carbono-Nitrogênio Liases/química , Reagentes de Ligações Cruzadas/química , Polarização de Fluorescência , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/química , Humanos , Cinética , Proteína 2 Glutamina gama-Glutamiltransferase , Fatores de Tempo , Transglutaminases/química
16.
Amino Acids ; 48(1): 31-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26250429

RESUMO

Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca(2+)-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins and γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the K m and the V max kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild-type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2-driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of crosslinked proteins correlates with the manifestation of degenerative disorders.


Assuntos
Aminas/metabolismo , Carbono-Nitrogênio Liases/química , Carbono-Nitrogênio Liases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Cálcio/metabolismo , Carbono-Nitrogênio Liases/genética , Domínio Catalítico , Proteínas de Ligação ao GTP/genética , Humanos , Cinética , Mutação de Sentido Incorreto , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA