Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 320: 115926, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940007

RESUMO

The color and Chemical Oxygen Demand (COD) reduction in distillery industrial effluent (DIW) was investigated utilizing photo (UV), sono (US), electrocoagulation (EC), UV + US, UV + EC, US + EC, and US + UV + EC technologies. The empirical study demonstrated that the UV + US + EC process removed almost 100% of color and 95.63% of COD from DIW while consuming around 6.97 kWh m-3 of electrical energy at the current density of 0.175 A dm-2, COD of 3600 mg L-1, UV power of 32 W, US power of 100 W, electrode pairings of Fe/Fe, inter-electrode distance of 0.75 cm, pH of 7, and reaction time of 4 h, respectively. The values found were much greater than those produced using UV, US, EC, UV + US, UV + EC, and US + EC methods. The influence of various control variables such as treatment time (1-5 h), current density (0.075-2.0 A dm-2), COD (1800-6000 mg L-1), inter-electrode distance (0.75-3.0 cm), electrode pairings (Fe/Fe, Fe/Al, Al/Fe, Al/Al), UV (8-32 W), and US (20-100 W) on the color and COD reduction were investigated to determine the optimum operating conditions. It was observed that, an increase in treatment time, current density, UV and US power, decrease in the COD, and inter-electrode distance with Fe/Fe electrode combination improved the COD removal efficiency. The UV and US + EC processes' synergy index was investigated and reported. The results showed that, the US + UV + EC treatment combination was effective in treating industrial effluent and wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eletrocoagulação/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos
2.
Biotechnol Appl Biochem ; 69(5): 2161-2175, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34694636

RESUMO

l-Asparaginase catalyzes the hydrolysis of asparagine into aspartic acid and ammonia. The present work elaborates the isolation and identification of a novel endophytic fungal isolate producing l-glutaminase and urease-free l-asparaginase. Cell growth and enzyme production were investigated for large production. The isolated endophytic fungi were identified at molecular levels and a phylogenetic tree was constructed. The enzyme synthesis was evaluated by cultivating the isolated microorganisms in potato dextrose agar medium. Out of 27 isolated endophytes, nine were producing "l-glutaminase and urease-free l-asparaginase." l-Asparaginase from Chaetomium sp. exhibited superior enzyme activity than from the other isolates. Observed optimal conditions for l-asparaginase activity were 25 min of incubation time, 0.5 mg of enzyme source, 40°C of temperature, and pH 7.0. l-Asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells. The current study has demonstrated the production of contaminant-free l-asparaginase enzyme from endophytic fungal species. The results showed that: (a) maximum enzyme activity was observed for l-asparaginase from Chaetomium sp., (b) concentration of glucose in the medium as a carbon source suppressed the enzyme production. Chaetomium sp. is a novel source for "l-glutaminase and urease-free l-asparaginase," which may play a major role in pharmacotherapy.


Assuntos
Asparaginase , Chaetomium , Humanos , Glutaminase , Endófitos , Urease , Filogenia
3.
Protein Expr Purif ; 190: 106006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742913

RESUMO

l-asparaginase is a chemotherapeutic drug used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. l-asparaginase helps in removing acrylamide found in fried and baked foods which is carcinogenic in nature. The search for new therapeutic enzymes is of great interest in both medical and food applications. The present work aims to isolate the intracellular l-asparaginase from endophytic fungi Chaetomium sp. The intracellular enzyme was partially purified by chromatographic techniques. Molecular weight of enzyme was found to be ~66 kDa by SDS PAGE analysis. The enzyme is highly specific for l-asparagine and did not show glutaminase and urease activity. Maximum enzyme activity was found to be 58 ± 5 U/mL at 40 °C, pH 7.0 with 2 µg of protein. Intracellular l-asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells.


Assuntos
Antineoplásicos , Asparaginase , Chaetomium/enzimologia , Proteínas Fúngicas , Glutaminase/química , Urease/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Asparaginase/química , Asparaginase/isolamento & purificação , Asparaginase/farmacologia , Linhagem Celular Tumoral , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/farmacologia , Humanos
4.
Protein J ; 40(1): 41-53, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400087

RESUMO

The impact of autophagy on cancer treatment and its corresponding responsiveness has galvanized the scientific community to develop novel inhibitors for cancer treatment. Importantly, the discovery of inhibitors that targets the early phase of autophagy was identified as a beneficial choice. Despite the number of research in recent years, screening of the DrugBank repository (9591 molecules) for the Vacuolar protein sorting 34 (VPS34) has not been reported earlier. Therefore, the present study was designed to identify potential VPS34 antagonists using integrated pharmacophore strategies. Primarily, an energy-based pharmacophore and receptor cavity-based analysis yielded five (DHRRR) and seven featured (AADDHRR) pharmacophore hypotheses respectively, which were utilized for the database screening process. The glide score, the binding free energy, pharmacokinetics and pharmacodynamics properties were examined to narrow down the screened compounds. This analysis yielded a hit molecule, DB03916 that exhibited a better docking score, higher binding affinity and better drug-like properties in contrast to the reference compound that suffers from a toxicity property. Importantly, the result was validated using a 50 ns molecular dynamics simulation study. Overall, we conclude that the identified hit molecule DB03916 is believed to serve as a prospective antagonist against VPS34 for cancer treatment.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Autofagia/efeitos dos fármacos , Sítios de Ligação , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Bases de Dados de Produtos Farmacêuticos , Reposicionamento de Medicamentos , Expressão Gênica , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Piperazinas/química , Piperazinas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA