Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
mSphere ; 7(2): e0092621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35350846

RESUMO

An intact gut microbiota confers colonization resistance against Clostridioides difficile through a variety of mechanisms, likely including competition for nutrients. Recently, proline was identified as an important environmental amino acid that C. difficile uses to support growth and cause significant disease. A posttranslationally modified form, trans-4-hydroxyproline, is highly abundant in collagen, which is degraded by host proteases in response to C. difficile toxin activity. The ability to dehydrate trans-4-hydroxyproline via the HypD glycyl radical enzyme is widespread among gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. Therefore, we constructed a C. difficile ΔhypD mutant and found that it was modestly impaired in fitness in a mouse model of infection, and was associated with an altered microbiota when compared to mice challenged with the wild-type strain. Changes in the microbiota between the two groups were largely driven by members of the Lachnospiraceae family and the Clostridium genus. We found that C. difficile and type strains of three commensal Clostridia had significant alterations to their metabolic gene expression in the presence of trans-4-hydroxyproline in vitro. The proline reductase (prd) genes were elevated in C. difficile, consistent with the hypothesis that trans-4-hydroxyproline is used by C. difficile to supply proline for energy metabolism. Similar transcripts were also elevated in some commensal Clostridia tested, although each strain responded differently. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by trans-4-hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche. Further elucidation of the differences between them in the presence of hydroxyproline and other key nutrients will be important in determining their role in nutrient competition against C. difficile. IMPORTANCE Proline is an essential environmental amino acid that C. difficile uses to support growth and cause significant disease. A posttranslationally modified form, hydroxyproline, is highly abundant in collagen, which is degraded by host proteases in response to C. difficile toxin activity. The ability to dehydrate hydroxyproline via the HypD glycyl radical enzyme is widespread among gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. We found that C. difficile and three commensal Clostridia strains had significant, but different, alterations to their metabolic gene expression in the presence of hydroxyproline in vitro. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche. Further elucidation of the differences between them in the presence of hydroxyproline and other key nutrients will be important to determining their role in nutrient competition against C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Clostridioides , Clostridioides difficile/genética , Clostridium , Infecções por Clostridium/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Camundongos , Peptídeo Hidrolases , Prolina/metabolismo
2.
Anaerobe ; 66: 102279, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022384

RESUMO

The relationship between the gut microbiota and Clostridioides difficile, and its role in the severity of C. difficile infection in humans is an area of active research. Intestinal carriage of toxigenic and non-toxigenic C. difficile strains, with and without clinical signs, is reported in animals, however few studies have looked at the risk factors associated with C. difficile carriage and the role of the host gut microbiota. Here, we isolated and characterized C. difficile strains from different animal species (predominantly canines (dogs), felines (cats), and equines (horses)) that were brought in for tertiary care at North Carolina State University Veterinary Hospital. C. difficile strains were characterized by toxin gene profiling, fluorescent PCR ribotyping, and antimicrobial susceptibility testing. 16S rRNA gene sequencing was done on animal feces to investigate the relationship between the presence of C. difficile and the gut microbiota in different hosts. Here, we show that C. difficile was recovered from 20.9% of samples (42/201), which included 33 canines, 2 felines, and 7 equines. Over 69% (29/42) of the isolates were toxigenic and belonged to 14 different ribotypes including ones known to cause CDI in humans. The presence of C. difficile results in a shift in the fecal microbial community structure in both canines and equines. Commensal Clostridium hiranonis was negatively associated with C. difficile in canines. Further experimentation showed a clear antagonistic relationship between the two strains in vitro, suggesting that commensal Clostridia might play a role in colonization resistance against C. difficile in different hosts.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Fezes/microbiologia , Microbioma Gastrointestinal , Interações Microbianas , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Técnicas de Tipagem Bacteriana , Gatos , Chlorocebus aethiops , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/microbiologia , Técnicas de Cocultura , Cães , Feminino , Cavalos , Hospitais Veterinários , Interações Hospedeiro-Patógeno , Masculino , Testes de Sensibilidade Microbiana , North Carolina , Reação em Cadeia da Polimerase , Prevalência , RNA Ribossômico 16S , Ribotipagem , Fatores de Risco , Atenção Terciária à Saúde , Células Vero
3.
Poult Sci ; 93(5): 1258-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24795320

RESUMO

Essential oils have been reported to possess antimicrobial properties and therefore have potential usage as natural antimicrobials in food. In a previous study, thyme orange essential oil combination (TOC) used at the 0.5% level as a dip application on chicken cut-up parts had a significant antibacterial effect against Salmonella and Campylobacter. A study was designed to evaluate the effect of salt-phosphate marinade solution containing 0.5% TOC to 1) reduce Salmonella Enteritidis and Campylobacter coli numbers on broiler breast fillets and whole wings marinated by vacuum tumbling, and 2) reduce cross-contamination of both pathogens between inoculated and uninoculated parts during marination. A total of 52 skinless breast fillets and 52 whole wings were used for the 2 replications. For each replication, each cut-up part was randomly assigned to 1 of 5 groups: treatment 1: uninoculated parts marinated without TOC; treatment 2: inoculated parts marinated without TOC; treatment 3: uninoculated parts marinated with TOC; treatment 4: inoculated parts marinated with TOC; and control: nonmarinated inoculated parts. Samples were dipped in an inoculum containing a mixture of Salmonella Enteritidis and C. coli. The treatment samples were marinated by vacuum tumbling. All samples were immediately evaluated to determine Salmonella Enteritidis and C. coli numbers. Results indicated that TOC at the 0.5% level in the marinade solution applied by vacuum tumbling significantly reduced (P < 0.05) numbers of viable Salmonella Enteritidis by 2.6 and 2.3 log cfu/mL on broiler breast fillets and C. coli by 3.6 and 3.1 log cfu/mL on whole wings. Cross-contamination was observed as the uninoculated chicken parts marinated with inoculated parts were positive. However, the number of bacterial cells recovered from the TOC treated samples were significantly lower (P < 0.05) than the numbers recovered from the untreated samples. Marination with a salt phosphate formulation containing 0.5% TOC successfully reduced Salmonella and Campylobacter numbers on poultry products.


Assuntos
Antibacterianos/farmacologia , Campylobacter coli/efeitos dos fármacos , Galinhas/microbiologia , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Carne/microbiologia , Óleos de Plantas/farmacologia , Salmonella enteritidis/efeitos dos fármacos , Animais , Campylobacter coli/crescimento & desenvolvimento , Campylobacter coli/isolamento & purificação , Músculos Peitorais/microbiologia , Músculos Peitorais/fisiologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/isolamento & purificação , Thymus (Planta)/química , Asas de Animais/microbiologia , Asas de Animais/fisiologia
4.
Poult Sci ; 90(5): 1067-73, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21489956

RESUMO

The intestine of the newly hatched chick is immature at hatch. Yeast contains nucleotides and ß-glucans that enhance intestinal development and chick growth. Accordingly, a 14-d experiment was conducted to evaluate the efficacy of a novel yeast product and bacitracin methylene disalicylate in enhancing early growth and intestinal maturation in chicks obtained from young (26-27 wk old) and old (58 to 59 wk old) breeder hens. Chicks (384) were randomly assigned to 8 dietary treatments. Treatment 1 (YH) consisted of chicks, from young hens, fed corn-soybean meal (SBM) diet alone. Treatment 2 (YHB) consisted of chicks, from young hens, fed corn-SBM basal into which BMD was added at 0.055 g/kg. Treatment 3 (YHE) consisted of chicks, from young hens, fed corn-SBM basal into which yeast extract (YE) was added at 0.075% level. Treatment 4 (YHED) consisted of chicks, from young hens, fed corn-SBM basal into which YE was added at 0.15% level. Treatments 5 (OH), 6 (OHB), 7 (OHE), and 8 (OHED) consisted of chicks from old hens fed diets similar to those given to YH in treatments 1, 2, 3, and 4, respectively. Growth performance (body weight gain and feed conversion ratio) was evaluated on d 7 and 14. Intestinal tissue samples were also analyzed for alkaline phosphatase (ALP) activity as an indicator of intestinal maturation on d 4 and 13 of experiment. Results showed that by d 14 of experiment, only BMD treatments (YHB and OHB) improved body weight gain (P < 0.05). However, the body weight gains of chicks in the yeast-supplemented treatments (YHE, YHED, OHE, and OHED) were statistically similar (P > 0.05) to those of the BMD treatments. Ileal ALP activity was consistently enhanced by BMD and yeast product supplemented at 0.075% of the diet. It was concluded that antibiotic BMD and our novel yeast product supplemented at 0.075% of the diet improved early chick growth and maturation of the ileal segment of the small intestine.


Assuntos
Envelhecimento/fisiologia , Bacitracina/farmacologia , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Intestinos/crescimento & desenvolvimento , Salicilatos/farmacologia , Leveduras/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Feminino , Aumento de Peso/efeitos dos fármacos
5.
Poult Sci ; 89(11): 2380-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20952700

RESUMO

The etiological agent of necrotic enteritis is Clostridium perfringens. Traditionally, necrotic enteritis is controlled with in-feed antibiotics. However, increasing consumer demand for drug-free poultry has fostered the search for nonantibiotic alternatives. Yeast extract contain nucleotides that are immunomodulatory and also essential for cellular functions. An experiment was conducted to evaluate the efficacy of NuPro yeast extract (Alltech Inc., Nicholasville, KY) in reducing intestinal C. perfringens levels in broiler chickens. One hundred ninety-two 1-d-old male broiler chicks were obtained and randomly assigned to 6 treatments in a battery cage trial. Treatment 1 consisted of chicks fed a corn-soybean meal basal diet (BD) without added bacitracin methylene disalicylate or NuPro. Treatment 2 consisted of chicks fed BD into which bacitracin methylene disalicylate was added at 0.055 g/kg. Treatment 3 consisted of chicks fed BD supplemented with NuPro at a 2% level for the first 10 d of the experiment. Treatments 4 (PX), 5, and 6 (PN) consisted of chicks that were challenged with 3 mL of the C. perfringens inoculum (~10(7) cfu/mL) on d 14, 15, and 16 of the experiment and fed diets similar to treatments 1, 2, and 3, respectively. On d 1 and 7 postchallenge, intestinal C. perfringens levels, lesion scores, and alkaline phosphatase activity were assessed. On d 1 postchallenge, C. perfringens level in treatment 5 (2.09 log(10) cfu/g) was lower (P < 0.05) compared with the PX treatment (4.71 log(10) cfu/g) but similar to the PN treatment (2.98 log(10) cfu/g). A similar trend was observed on d 7 postchallenge. NuPro supplementation enhanced alkaline phosphatase activity (P < 0.05) in C. perfringens-challenged chicks and appeared to reduce intestinal lesion scores. Although dietary supplementation of NuPro in the PN treatment reduced C. perfringens levels by 1.73 and 0.68 log(10) cfu/g compared with the PX treatment on d 1 and 7 postchallenge, respectively, these reductions were not significant. Extending the period of NuPro supplementation beyond the first 10 d of life should be considered for achieving significant reduction in intestinal C. perfringensg levels.


Assuntos
Ração Animal , Infecções por Clostridium/veterinária , Clostridium perfringens/efeitos dos fármacos , Proteínas Fúngicas/uso terapêutico , Intestinos/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Animais , Galinhas , Infecções por Clostridium/prevenção & controle , Masculino , Glycine max , Leveduras , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA