Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411010, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895894

RESUMO

Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.

2.
ACS Macro Lett ; 13(6): 681-687, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38755739

RESUMO

Main-chain stimuli-responsive polymers synthesized via polymerization techniques that do not rely on metal-based catalysis are highly desirable for economic reasons and to avoid metal-polymer interactions. Herein, we introduce a metal-free head-to-tail organobase-catalyzed hydroxyl-yne click polymerization of an AB-type monomer to realize photoswitchable polymers featuring α-bismines as main-chain repeating units. The prepared main-chain α-bisimine-based polymers show excellent photoswitching in solution. We further post-functionalize the obtained polymers with various thiol compounds via thiol-Michael reactions to significantly lower the glass transition temperature (Tg), likely to be beneficial for the photoswitching process in the solid state. Thus, the herein introduced polymerization technique not only provides metal-free access to main-chain stimuli-responsive polymers, but also allows for the flexible post-modification of the obtained polymers to generate advanced macromolecular architectures with tunable properties.

3.
Mater Horiz ; 11(12): 2856-2864, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38804229

RESUMO

The decryption and verification of encrypted information via a simple and efficient method is always difficult and challenging in the field of information security. Herein, a series of water-sensitive fluorescent microgels are fabricated for highly secured anti-counterfeiting with authenticity identification. The initial negatively charged microgels (MG) are made up of N-isopropylacrylamide (NIPAM), acrylic acid (AAc) and anthracen-9-yl acrylate (9-ANA, blue fluorescent monomer). The prepared MGs can bind cationic fluorescent dyes such as 5-aminofluorescein (FITC, green fluorescent dye) and rhodamine B (Rh B, red fluorescent dye) via electrostatic interaction, emitting multi-fluorescent colors based on the fluorescence resonance energy transfer (FRET) process. Furthermore, the fluorescence colors of MG-derived systems can be rapidly changed by swelling in water, which can block the FRET process and change the aggregation state of dyes. With the assistance of inkjet printing, multi-color security patterns can be designed and encoded, which can be revealed by UV irradiation and further verified by water stimulation. This study has pioneered a novel strategy to verify the authenticity of decrypted information, which greatly improves the security level of information.

4.
Bioconjug Chem ; 35(3): 312-323, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38420925

RESUMO

Developing effective amyloidosis inhibitors poses a significant challenge due to the dynamic nature of the protein structures, the complex interplay of interfaces in protein-protein interactions, and the irreversible nature of amyloid assembly. The interactions of amyloidogenic polypeptides with other peptides play a pivotal role in modulating amyloidosis and fibril formation. This study presents a novel approach for designing and synthesizing amyloid interaction surfaces using segments derived from the amyloid-promoting sequence of amyloid ß-peptide [VF(Aß(18-19)/FF(Aß(19-20)/LVF(Aß(17-19)/LVFF(Aß(17-20)], where VF, FF, LVF and LVFF stands for valine phenylalanine dipeptide, phenylalanine phenylalanine dipeptide, leucine valine phenylalanine tripeptide and leucine valine phenylalanine phenylalanine tetrapeptide, respectively. These segments are conjugated with side-chain proline-based methacrylate polymers serving as potent lysozyme amyloidosis inhibitors and demonstrating reduced cytotoxicity of amyloid aggregations. Di-, tri-, and tetra-peptide conjugated chain transfer agents (CTAs) were synthesized and used for the reversible addition-fragmentation chain transfer polymerization of tert-butoxycarbonyl (Boc)-proline methacryloyloxyethyl ester (Boc-Pro-HEMA). Deprotection of Boc-groups from the side-chain proline pendants resulted in water-soluble polymers with defined peptide chain ends as peptide-polymer bioconjugates. Among them, the LVFF-conjugated polymer acted as a potent inhibitor with significantly suppressed lysozyme amyloidosis, a finding supported by comprehensive spectroscopic, microscopic, and computational analyses. These results unveil the synergistic effect between the segment-derived amyloid ß-peptide and side-chain proline-based polymers, offering new prospects for targeting lysozyme amyloidosis.


Assuntos
Peptídeos beta-Amiloides , Amiloidose , Humanos , Peptídeos beta-Amiloides/química , Prolina , Leucina , Polímeros/química , Muramidase , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Amiloide , Dipeptídeos/farmacologia , Fenilalanina , Valina
5.
Adv Mater ; : e2311347, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335472

RESUMO

Purely organic room-temperature phosphorescence (RTP) materials have received intense attention due to their fascinating optical properties and advanced optoelectronic applications. The promotion of intersystem crossing (ISC) and minimalization of nonradiative dissipation under ambient conditions are key prerequisites for realizing high-performance organic RTP; However, the ISC process is generally inefficient for organic fluorogens and the populated triplet excitons are always too susceptible to be well stabilized by conventional means. Particularly, organizing organic fluorophores into compact and ordered entities by supramolecular dynamic interactions has proven to be a newly-emerged strategy to boost the ISC process greatly and suppress the non-radiative relaxations immensely, facilitating the population and stabilization of triplet excitons to access high-performance organic RTP. Consequently, well-defined organic emitters enable robust RTP emission even in the solution state, thus greatly extending the applications. Here, this review is focused on a timely and brief introduction to recent progress in tailoring ordered high-performance RTP emitters by supramolecular dynamic interactions. Their typical preparation strategies, optoelectronic properties, and applications are thoroughly summarized. In the summary section, key challenges and perspectives of this field are highlighted to suggest potential directions for future study.

6.
J Am Chem Soc ; 145(42): 23334-23345, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823604

RESUMO

The search for new redox-active organic materials (ROMs) is essential for the development of sustainable energy-storage solutions. In this study, we present a new class of cyclobuta[b]quinoxaline-1,2-diones or squaric acid quinoxalines (SQXs) as highly promising candidates for ROMs featuring exceptional stability and high redox potentials. While simple 1,2- and 1,3-squaric acid amides (SQAs), initially reported by Hünig and coworkers decades ago, turned out to exhibit low stability in their radical cation oxidation states, we demonstrate that embedding the nitrogen atoms into a quinoxaline heterocycle leads to robust two-electron SQX redox systems. A series of SQX compounds, as well as their corresponding radical cations, were prepared and fully characterized, including EPR spectroscopy, UV-vis spectroscopy, and X-ray diffraction. Based on the promising electrochemical properties and high stability of the new ROM, we developed SQX-functionalized polymers and investigated their physical and electrochemical properties for energy-storage applications. These polymers showed remarkable thermal stability well above 200 °C with reversible redox properties and potentials of about 3.6 V vs Li+/Li. By testing the galvanostatic cycling performance in half-cells with lithium-metal counter electrodes, a styrene-based polymer with SQX redox side groups showed stable cycling for single-electron oxidation for more than 100 cycles. These findings render this new class of redox-active polymers as highly promising materials for future energy-storage applications.

7.
Biofabrication ; 15(4)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37722376

RESUMO

Although various research efforts have been made to produce a vascular-like network structure as scaffolds for tissue engineering, there are still several limitations. Meanwhile, no articles have been published on the direct embedding of cells within a glucose sensitive sacrificial hydrogel followed by three-dimensional (3D) bioprinting to fabricate vascular structures. In this study, the hydrogel composed of reversibly crosslinked poly(ethylene glycol) diacrylate and dithiothreitol with borax and branched polyethylenimine was used as the sacrificial hydrogel to fabricate vascular-like network structure. The component proportion ratio of the sacrificial hydrogel was optimized to achieve proper self-healing, injectable, glucose-sensitive, and 3D printing properties through the balance of boronate ester bond, hydrogen bond, and steric hinderance effect. The endothelial cells (ECs) can be directly embedded into sacrificial hydrogel and then bioprinted through a 110µm nozzle into the neural stem cell (NSC)-laden non-sacrificial hydrogel, forming the customized EC-laden vascularized microchannel (one-step). The EC-laden sacrificial hydrogel was dissolved immediately in the medium while cells kept growing. The ECs proliferated well within the vascularized microchannel structure and were able to migrate to the non-sacrificial hydrogel in one day. ECs and NSCs interacted around the vascularized microchannel to form capillary-like structure and vascular-like structure expressing CD31 in 14 d. The sacrificial hydrogel conveniently prepared from commercially available chemicals through simple mixing can be used in 3D bioprinting to create customized and complex but easily removable vascularized structure for tissue engineering applications.


Assuntos
Bioimpressão , Células Endoteliais , Tinta , Engenharia Tecidual/métodos , Hidrogéis/química , Microvasos , Glucose , Bioimpressão/métodos , Impressão Tridimensional , Alicerces Teciduais/química
8.
ACS Omega ; 8(26): 23510-23520, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426254

RESUMO

Magnesium electrolytes based on a polycarbonate with either magnesium tetrakis(hexafluoroisopropyloxy) borate (Mg(B(HFIP)4)2) or magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) for magnesium batteries were prepared and characterized. The side-chain-containing polycarbonate, poly(2-butyl-2-ethyltrimethylene carbonate) (P(BEC)), was synthesized by ring opening polymerization (ROP) of 5-ethyl-5-butylpropane oxirane ether carbonate (BEC) and mixed with Mg(B(HFIP)4)2 or Mg(TFSI)2 to form low- and high-salt-concentration polymer electrolytes (PEs). The PEs were characterized by impedance spectroscopy, differential scanning calorimetry (DSC), rheology, linear sweep voltammetry, cyclic voltammetry, and Raman spectroscopy. A transition from classical salt-in-polymer electrolytes to polymer-in-salt electrolytes was indicated by a significant change in glass transition temperature as well as storage and loss moduli. Ionic conductivity measurements indicated the formation of polymer-in-salt electrolytes for the PEs with 40 mol % Mg(B(HFIP)4)2 (HFIP40). In contrast, the 40 mol % Mg(TFSI)2 PEs showed mainly the classical behavior. HFIP40 was further found to have an oxidative stability window greater than 6 V vs Mg/Mg2+, but showed no reversible stripping-plating behavior in an Mg||SS cell.

9.
Soft Matter ; 19(30): 5663-5667, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37462440

RESUMO

We report a novel method for the fabrication of polymeric Janus nanorods via sequential polymerization from anodic aluminum oxide (AAO) templates. Dual compositions can be incorporated into individual nanorods and endow versatile potential applications. This fabrication strategy paves the way for constructing multifunctional nanostructures and brings together different materials in a single entity.

10.
Chemistry ; 29(50): e202301582, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272359

RESUMO

The aggregation of a cyclodextrin (CD)-based [3]rotaxane has been observed and analyzed in detail for the first time in this work. Although the hexagonal packing aggregation of CD-based polyrotaxane is a well known phenomenon, corresponding studies in terms of rotaxanes without any polymer structure have not been conducted so far, probably owing to the difficulty of the molecular design. We synthesized a series of [3]rotaxane species by using a urea-end-capping method and evaluated their aggregation behavior by XRD and SEM measurements. [3]Rotaxane species containing native CD rings showed clear signals assigned to the hexagonal packing by XRD measurement as did polyrotaxane; this proved their aggregation capability. Because the corresponding per-acetylated derivatives did not show this aggregation behavior, the driving force of this aggregation was suggested to be hydrogen bond formation among CD units. The effect of axle end structures and partial acetylation of CDs were also studied.

11.
Macromol Rapid Commun ; 44(19): e2300270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358931

RESUMO

Herein, novel photoresponsive spiropyran (SP)-based P(DEGMA-co-SpMA) copolymers with variable percentages of SP fractions are synthesized. The SP group present in these polymers exhibited the abilities of reversible photoisomerism. Their photoresponsive, structural, and thermal properties have been investigated and compared using various characterization techniques. These light-responsive copolymers are found to exhibit photoswitchable glass transition temperature (Tg ), high thermal stability (Td > 250°C), instant photochromism as well as fluorescence upon exposure to UV light. It is demonstrated that the Tg of these synthesized polymers increased when irradiated with UV light (λ = 365 nm), as a consequence of the photoisomerization of incorporated SP groups into their merocyanine form. This increase in Tg is attributed to an increase in polarity and a decrease in the overall entropy of the polymeric system when it switches from the ring-closed SP form (less-ordered state) to the ring-opened merocyanine form (more-ordered state). Therefore, such polymers with a unique feature of phototunable glass transition temperatures provide the possibility to be integrated into functional materials for various photoresponsive applications.

12.
ACS Appl Mater Interfaces ; 15(20): 24517-24527, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186810

RESUMO

Branched sulfonated polymers present considerable potential for application as proton exchange membranes, yet investigation of branched polymers containing sulfonated branched centers remains to be advanced. Herein, we report a series of polymers with ultradensely sulfonated branched centers, namely, B-x-SPAEKS, where x represents the degree of branching. In comparison with the analogous polymers bearing sulfonated branched arms, B-x-SPAEKS showed a reduced water affinity, resulting in less swelling and lower proton conductivity. The water uptake, swelling ratio (in-plane), and proton conductivity of B-10-SPAEKS at 80 °C were 52.2%, 57.7%, and 23.6% lower than their counterparts, respectively. However, further analysis revealed that B-x-SPAEKS featured significantly better proton conduction under the same water content due to the formation of larger hydrophilic clusters (∼10 nm) that promoted efficient proton transportation. B-12.5-SPAEKS exhibited a proton conductivity of 138.8 mS cm-1 and a swelling ratio (in-plane) of only 11.6% at 80 °C, both of which were superior to Nafion 117. In addition, a decent single-cell performance of B-12.5-SPAEKS was also achieved. Consequently, the decoration of sulfonic acid groups on the branched centers represents a very promising strategy, enabling outstanding proton conductivity and dimensional stability simultaneously even with low water content.

13.
Polymers (Basel) ; 15(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37177276

RESUMO

Poly(ethylene oxide) block copolymers (PEOz BCP) have been demonstrated to exhibit remarkably high lithium ion (Li+) conductivity for Li+ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PIxPSyPEOz), a pronounced maximum ion conductivity was reported for short PEOz molecular weights around 2 kg mol-1. To later enable a systematic exploration of the influence of the PIx and PSy block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEOz block length can be kept constant, while the PIx and PSy block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEOz chains to terminate PIxPSy BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PIxPSyPEOz with narrow chain length distribution and a fixed PEOz block length of z = 1.9 kg mol-1 and a D = 1.03 are obtained. The successful quantitative end group modification of the PEOz block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEOz BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li+ conductivity in Li+ batteries.

15.
ACS Macro Lett ; 11(2): 161-165, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574763

RESUMO

Herein, the synthesis of polyethylene via an innovative post-polymerization modification (PPM) approach is reported. For this, a block copolymer of poly[N-(acryloyloxy)phthalimide] (PAP) is synthesized by straightforward reversible addition-fragmentation chain-transfer (RAFT) polymerization using a dedicated macroRAFT transfer agent. Upon decarboxylation of the PAP block, followed by efficient block copolymer cleavage, a polyethylene homopolymer with a predictable degree of polymerization is obtained.


Assuntos
Polietileno , Polímeros , Descarboxilação , Polimerização
16.
Macromol Rapid Commun ; 43(10): e2200068, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35320602

RESUMO

Herein the decarboxylation of poly[N-(acryloyloxy)phthalimide] (PAP) for the synthesis of functionalized polymers is reported. PAP homopolymer and block copolymers are used as precursor polymers for the straightforward functionalization via decarboxylation and subsequent Michael-type addition or nitroxide radical coupling (NRC).


Assuntos
Ftalimidas , Polímeros , Descarboxilação
17.
Angew Chem Int Ed Engl ; 61(16): e202114896, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35068039

RESUMO

The inverse vulcanization produces high sulfur content polymers from alkenes and elemental sulfur. Control over properties such as the molar mass or the solubility of polymers is not well established, and existing strategies lack predictability or require large variations of the composition. Systematic design principles are sought to allow for a targeted design of materials. Herein, we report on the inverse vulcanization of norbornenylsilanes (NBS), with a different number of hydrolysable groups at the silicon atom. Inverse vulcanization of mixtures of NBS followed by polycondensation yielded soluble high sulfur content copolymers (50 wt % S) with controllable weight average molar mass (MW ), polydispersity (D), glass transition temperature (TG ), or zero-shear viscosity (η0 ). Polycondensation was conducted in the melt with HCl as a catalyst, abolishing the need for a solvent. Purification by precipitation afforded polymers with a greatly reduced amount of low molar mass species.

18.
Macromol Rapid Commun ; 43(12): e2100760, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34894371

RESUMO

Researchers have dedicated their efforts for the creation of a wide choice of complex and precise macromolecular architectures over the past 100 years. Among them, cyclic polymers benefit from their absence of terminal chains and from their singular topology to minimize their hydrodynamic volume in solution, increase their chemical stability, limit their number of possible conformations as well as a reduce their propensity to crystallize or to form entanglements in comparison to their acyclic counterparts. While monocyclic structures have already been widely investigated and reviewed, reports on more complex polycyclic structures are rare. In this regard, cage-shaped polymers-consisting of at least three polymer chains covalently interconnected through strictly two junction points-have received little attention over the past two decades. Although their synthesis is a worthy challenge, only a few synthetic methodologies of polymer cages were successfully developed so far. Thus, this review intends to highlight the key concepts of the conception of cage-shaped polymers in addition to propose an actual and exhaustive state-of-art concept of their synthesis to rationally promote the next-generation synthesis strategies.

19.
Membranes (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34677527

RESUMO

In this work, a facile preparation method was proposed to reduce natural organics fouling of hydrophobic membrane via UV grafting polymerization with methacrylic acid (MAAc) and methyl acrylamide (MAAm) as hydrophilic monomers, followed by multihydrogen bond self-assembly. The resulting poly(vinylidene fluoride)-membranes were characterized with respect to monomer ratio, chemical structure and morphology, surface potential, and water contact angle, as well as water flux and organic foulants ultrafiltration property. The results indicated that the optimal membrane modified with a poly(MAAc-co-MAAm) polymer gel layer derived from a 1:1 monomer ratio exhibited superior hydrophilicity and excellent gel layer stability, even after ultrasonic treatment or soaking in acid or alkaline aqueous solution. The initial water contact angle of modified membranes was only 36.6° ± 2.9, and dropped to 0° within 13 s. Moreover, flux recovery rates (FRR) of modified membranes tested by bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA) solution, respectively, were all above 90% after one-cycle filtration (2 h), significantly higher than that of the pure membrane (70-76%). The total fouling rates (Rt) of the pure membrane for three foulants were as high as 47.8-56.2%, while the Rt values for modified membranes were less than 30.8%. Where Rt of BSA dynamic filtration was merely 10.7%. The membrane designed through grafting a thin-layer hydrophilic hydrogel possessed a robust antifouling property and stability, which offers new insights for applications in pure water treatment or protein purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA