Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 9(1): 948, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700782

RESUMO

Mouse embryonic stem cells (mESCs) are pluripotent and can differentiate into cells belonging to the three germ layers of the embryo. However, mESC pluripotency and genome stability can be compromised in prolonged in vitro culture conditions. Several factors control mESC pluripotency, including Wnt/ß-catenin signaling pathway, which is essential for mESC differentiation and proliferation. Here we show that the activity of the Wnt/ß-catenin signaling pathway safeguards normal DNA methylation of mESCs. The activity of the pathway is progressively silenced during passages in culture and this results into a loss of the DNA methylation at many imprinting control regions (ICRs), loss of recruitment of chromatin repressors, and activation of retrotransposons, resulting into impaired mESC differentiation. Accordingly, sustained Wnt/ß-catenin signaling maintains normal ICR methylation and mESC homeostasis and is a key regulator of genome stability.


Assuntos
Diferenciação Celular , Proliferação de Células , Epigênese Genética , Homeostase , Células-Tronco Embrionárias Murinas/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Metilação de DNA , Camundongos , Células-Tronco Embrionárias Murinas/citologia
2.
Sci Rep ; 7(1): 9705, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852087

RESUMO

Imprinted genes control several cellular and metabolic processes in embryonic and adult tissues. In particular, paternally expressed gene-3 (Peg3) is active in the adult stem cell population and during muscle and neuronal lineage development. Here we have investigated the role of Peg3 in mouse embryonic stem cells (ESCs) and during the process of somatic cell reprogramming towards pluripotency. Our data show that Peg3 knockdown increases expression of pluripotency genes in ESCs and enhances reprogramming efficiency of both mouse embryonic fibroblasts and neural stem cells. Interestingly, we observed that altered activity of Peg3 correlates with major perturbations of mitochondrial gene expression and mitochondrial function, which drive metabolic changes during somatic cell reprogramming. Overall, our study shows that Peg3 is a regulator of pluripotent stem cells and somatic cell reprogramming.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Animais , Autorrenovação Celular/genética , Imunofluorescência , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
3.
Sci Rep ; 6: 36863, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827439

RESUMO

Homotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours. Here we investigate cell-to-cell interaction between mouse mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs). MSCs represent an important source of adult stem cells since they have great potential for regenerative medicine, even though they are also involved in cancer progression. We report that MSCs can either fuse forming heterokaryons, or be invaded by ESCs through entosis. While entosis-derived hybrids never share their genomes and induce degradation of the target cell, fusion-derived hybrids can convert into synkaryons. Importantly we show that hetero-to-synkaryon transition occurs through cell division and not by nuclear membrane fusion. Additionally, we also observe that the ROCK-actin/myosin pathway is required for both fusion and entosis in ESCs but only for entosis in MSCs. Overall, we show that MSCs can undergo fusion or entosis in culture by generating distinct functional cellular entities. These two processes are profoundly different and their outcomes should be considered given the beneficial or possible detrimental effects of MSC-based therapeutic applications.


Assuntos
Células Híbridas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Embrionárias Murinas/citologia , Actinas/metabolismo , Animais , Fusão Celular , Técnicas de Cocultura , Entose , Células Híbridas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miosinas/metabolismo , Quinases Associadas a rho/metabolismo
4.
Stem Cell Reports ; 2(5): 707-20, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24936456

RESUMO

Cyclic activation of the Wnt/ß-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with ß-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/ß-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs) into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/ß-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/ß-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the "Wnt-off" state can be considered an early reprogramming marker.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , Via de Sinalização Wnt , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Transição Epitelial-Mesenquimal , Fator 1-alfa Nuclear de Hepatócito/antagonistas & inibidores , Fator 1-alfa Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
J Clin Invest ; 124(7): 3215-29, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937431

RESUMO

Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches.


Assuntos
Neurônios Dopaminérgicos/transplante , Transtornos Parkinsonianos/terapia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Transdiferenciação Celular/genética , Clozapina/análogos & derivados , Clozapina/farmacologia , Drogas Desenhadas , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Transgênicos
6.
Stem Cells Transl Med ; 2(6): 473-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23658252

RESUMO

Current protocols for in vitro differentiation of human induced pluripotent stem cells (hiPSCs) to generate dopamine (DA) neurons are laborious and time-expensive. In order to accelerate the overall process, we have established a fast protocol by expressing the developmental transcription factors ASCL1, NURR1, and LMX1A. With this method, we were able to generate mature and functional dopaminergic neurons in as few as 21 days, skipping all the intermediate steps for inducting and selecting embryoid bodies and rosette-neural precursors. Strikingly, the resulting neuronal conversion process was very proficient, with an overall efficiency that was more than 93% of all the coinfected cells. hiPSC-derived DA neurons expressed all the critical molecular markers of the DA molecular machinery and exhibited sophisticated functional features including spontaneous electrical activity and dopamine release. This one-step protocol holds important implications for in vitro disease modeling and is particularly amenable for exploitation in high-throughput screening protocols.


Assuntos
Linhagem da Célula/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Lentivirus/genética , Potenciais da Membrana/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA