Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785079

RESUMO

Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. However, a challenge to the mass production of MFCs is the time-consuming assembly process, which could perhaps be overcome using additive manufacturing (AM) processes. AM or 3D-printing has played an increasingly important role in advancing MFC technology, by substituting essential structural components with 3D-printed parts. This was precisely the line of work in the EVOBLISS project, which investigated materials that can be extruded from the EVOBOT platform for a monolithically printed MFC. The development of such inexpensive, eco-friendly, printable electrode material is described below. The electrode in examination (PTFE_FREE_AC), is a cathode made of alginate and activated carbon, and was tested against an off-the-shelf sintered carbon (AC_BLOCK) and a widely used activated carbon electrode (PTFE_AC). The results showed that the MFCs using PTFE_FREE_AC cathodes performed better compared to the PTFE_AC or AC_BLOCK, producing maximum power levels of 286 µW, 98 µW and 85 µW, respectively. In conclusion, this experiment demonstrated the development of an air-dried, extrudable (3D-printed) electrode material successfully incorporated in an MFC system and acting as a cathode electrode.


Assuntos
Fontes de Energia Bioelétrica , Impressão Tridimensional , Alginatos/química , Fontes de Energia Bioelétrica/economia , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Desenho de Equipamento
2.
ChemElectroChem ; 7(6): 1312-1331, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32322457

RESUMO

In recent years, human urine has been successfully used as an electrolyte and organic substrate in bioelectrochemical systems (BESs) mainly due of its unique properties. Urine contains organic compounds that can be utilised as a fuel for energy recovery in microbial fuel cells (MFCs) and it has high nutrient concentrations including nitrogen and phosphorous that can be concentrated and recovered in microbial electrosynthesis cells and microbial concentration cells. Moreover, human urine has high solution conductivity, which reduces the ohmic losses of these systems, improving BES output. This review describes the most recent advances in BESs utilising urine. Properties of neat human urine used in state-of-the-art MFCs are described from basic to pilot-scale and real implementation. Utilisation of urine in other bioelectrochemical systems for nutrient recovery is also discussed including proofs of concept to scale up systems.

3.
Bioresour Technol Rep ; 7: 100297, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31853518

RESUMO

Microbial fuel cells (MFCs) with paper separators and liquid containing elements were investigated in supercapacitive mode. MFCs (15 mL) in a supercapacitive configuration, consisted of plain wrapped carbon veil anode (negative) and conductive latex cathode (positive). The internal supercapacitor is discharged galvanostatically and is self-recharged as red-ox reactions occur on both electrodes. MFCs were discharged at different current pulses varying from 1 mA to 7 mA. The MFCs had an equivalent series resistance of 41.2 ±â€¯3.5â€¯Ω caused mainly by the cathode. A maximum power of 1.380 ±â€¯0.083 mW (0.092 ±â€¯0.006 mW mL-1) was measured. Durability tests were conducted over 24 h collecting 1000 discharge cycles (0.5 s) and self-recharges (85 s) at a current of 1 mA. Over time the anode potential dropped causing a decline in performance perhaps due to evaporation of liquid from the pyramidal structure. Resistance and apparent capacitance measured during the durability test remained approximately constant during the cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA