RESUMO
INTRODUCTION: Increasing drug resistance and the absence of a cure necessitates exploration of novel treatment strategies for people living with HIV (PLWH). Targeting of soluble co-inhibitory immune checkpoint molecules (sICMs) represents a novel, potentially effective strategy in the management of HIV. METHODS: In this retrospective, longitudinal, observational study, the plasma levels of five prominent co-inhibitory sICMs-CTLA-4, LAG-3, PD-1 and its ligand PD-L1, as well as TIM-3-were quantified in 68 PLWH-before and one year after antiretroviral therapy (ART)-and compared with those of 15 healthy control participants. RESULTS: Relative to control participants, PLWH had substantially elevated pre-treatment levels of all five co-inhibitory sICMs (p < 0.0001-p < 0.0657), which, over the 12-month period of ART, remained significantly higher than those of controls (p < 0.0367-p < 0.0001). PLWH with advanced disease, reflected by a CD4+ T cell count <200 cells/mm3 before ART, had the lowest levels of CTLA-4 and LAG-3, while participants with pre-treatment HIV viral loads ≥100,000 copies/mL had higher pre-treatment levels of TIM-3, which also persisted at 12 months. CONCLUSIONS: Plasma levels of CTLA-4, LAG-3, PD-1, PD-L1 and TIM-3 were significantly elevated in treatment-naïve PLWH and remained so following one year of virally-suppressive ART, possibly identifying LAG-3 and TIM-3 in particular as potential targets for adjuvant immunotherapy.
RESUMO
It has been noted by the World Health Organisation that cases of tuberculosis in 2022 globally numbered 10.6 million, resulting in 1.3 million deaths, such that TB is one of the infectious diseases causing the greatest morbidity and mortality worldwide. Since as early as 1918, there has been an ongoing debate as to the relationship between cigarette smoking and TB. However, numerous epidemiological studies, as well as meta-analyses, have indicated that both active and passive smoking are independent risk factors for TB infection, development of reactivation TB, progression of primary TB, increased severity of cavitary disease, and death from TB, among several other considerations. With this considerable body of evidence confirming the association between smoking and TB, it is not surprising that TB control programmes represent a key potential preventative intervention. In addition to coverage of the epidemiology of TB and its compelling causative link with smoking, the current review is also focused on evidence derived from clinical- and laboratory-based studies of disease pathogenesis, most prominently the protective anti-mycobacterial mechanisms of the alveolar macrophage, the primary intracellular refuge of M. tuberculosis. This section of the review is followed by an overview of the major strategies utilised by the pathogen to subvert these antimicrobial mechanisms in the airway, which are intensified by the suppressive effects of smoke inhalation on alveolar macrophage function. Finally, consideration is given to a somewhat under-explored, pro-infective activity of cigarette smoking, namely augmentation of antibiotic resistance due to direct effects of smoke per se on the pathogen. These include biofilm formation, induction of cellular efflux pumps, which eliminate both smoke-derived toxicants and antibiotics, as well as gene modifications that underpin antibiotic resistance.
RESUMO
Aside from their key protective roles in hemostasis and innate immunity, platelets are now recognized as having multifaceted, adverse roles in the pathogenesis, progression and outcome of many types of human malignancy. The most consistent and compelling evidence in this context has been derived from the notable association of elevated circulating platelet counts with the onset and prognosis of various human malignancies, particularly lung cancer, which represents the primary focus of the current review. Key topics include an overview of the association of lung cancer with the circulating platelet count, as well as the mechanisms of platelet-mediated, pro-tumorigenic immunosuppression, particularly the role of transforming growth factor beta 1. These issues are followed by a discussion regarding the pro-tumorigenic role of platelet-derived microparticles (PMPs), the most abundant type of microparticles (MPs) in human blood. In this context, the presence of increased levels of PMPs in the blood of lung cancer patients has been associated with tumor growth, invasion, angiogenesis and metastasis, which correlate with disease progression and decreased survival times. The final section of the review addresses, firstly, the role of cancer-related platelet activation and thrombosis in the pathogenesis of secondary cardiovascular disorders and the associated mortality, particularly in lung cancer, which is second only to disease progression; secondly, the review addresses the potential role of antiplatelet agents in the adjunctive therapy of cancer.
Assuntos
Micropartículas Derivadas de Células , Neoplasias Pulmonares , Trombose , Humanos , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Trombose/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinogênese/metabolismo , Progressão da DoençaRESUMO
Background: Electronic cigarettes (ECs) are electronic aerosol delivery systems composed of nicotine and various chemicals, which are widely used to facilitate smoking cessation. Although ECs are considered safer than cigarettes, they do, however, contain chemical toxicants, some of which may interact with cells of the host's innate immune system of which neutrophils constitute a key component. Methods: The current study was designed to compare the effects of aqueous EC aerosol extracts (ECEs; with or without nicotine) with those of cigarette smoke extract (CSE) on neutrophil and platelet reactivity in vitro. Neutrophil reactivity is characterised by the generation of reactive oxygen species (ROS), degranulation (elastase release) and the release of extracellular DNA (neutrophil extracellular trap (NET) formation: NETosis), which were measured using chemiluminescence, spectrophotometric and microscopic procedures, respectively. Platelet reactivity was measured according to the magnitude of upregulated expression of the adhesion molecule CD62P on activated cells using a flow cytometric procedure. Results: Exposure of neutrophils to either ECEs or CSE caused a significant inhibition of ROS generation and elastase release by N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1â µM)-activated neutrophils. Pre-treatment of neutrophils with CSE also resulted in a marked attenuation of phorbol 12-myristate 13-acetate (6.25â nM)-mediated release of extracellular DNA, which was unaffected by the ECEs. Similarly, CSE, but not the ECEs, inhibited the expression of CD62P by platelets activated with ADP (100â µM). Conclusions: These observations suggest that ECE aerosols may inhibit some of the immuno-protective activities of neutrophils such as ROS production and elastase release by activated cells, the effect of which was not enhanced by inclusion of nicotine. The inhibitory effects of CSE were significantly more pronounced than those of ECEs, especially so for suppression of NET formation and platelet activation. If operative in vivo, these harmful immunosuppressive effects of ECEs may compromise intrinsic pulmonary antimicrobial defence mechanisms, albeit less so than cigarette smoke.
RESUMO
Neoadjuvant chemotherapy (NAC) may alter the immune landscape of patients with early breast cancer (BC), potentially setting the scene for more effective implementation of checkpoint-targeted immunotherapy. This issue has been investigated in the current study in which alterations in the plasma concentrations of 16 soluble co-stimulatory and co-inhibitory, immune checkpoints were measured sequentially in a cohort of newly diagnosed, early BC patients (n=72), pre-treatment, post-NAC and post-surgery using a Multiplex® bead array platform. Relative to a group of healthy control subjects (n=45), the median pre-treatment levels of five co-stimulatory (CD27, CD40, GITRL, ICOS, GITR) and three co-inhibitory (TIM-3, CTLA-4, PD-L1) soluble checkpoints were significantly lower in the BC patients vs. controls (p<0.021-p<0.0001; and p<0.008-p<0.00001, respectively). Following NAC, the plasma levels of six soluble co-stimulatory checkpoints (CD28, CD40, ICOS, CD27, CD80, GITR), all involved in activation of CD8+ cytotoxic T cells, were significantly increased (p<0.04-p<0.00001), comparable with control values and remained at these levels post-surgery. Of the soluble co-inhibitory checkpoints, three (LAG-3, PD-L1, TIM-3) increased significantly post-NAC, reaching levels significantly greater than those of the control group. PD-1 remained unchanged, while BTLA and CTLA-4 decreased significantly (p<0.03 and p<0.00001, respectively). Normalization of soluble co-stimulatory immune checkpoints is seemingly indicative of reversal of systemic immune dysregulation following administration of NAC in early BC, while recovery of immune homeostasis may explain the increased levels of several negative checkpoint proteins, albeit with the exceptions of CTLA-4 and PD-1. Although a pathological complete response (pCR) was documented in 61% of patients (mostly triple-negative BC), surprisingly, none of the soluble immune checkpoints correlated with the pCR, either pre-treatment or post-NAC. Nevertheless, in the case of the co-stimulatory ICMs, these novel findings are indicative of the immune-restorative potential of NAC in early BC, while in the case of the co-inhibitory ICMs, elevated levels of soluble PD-L1, LAG-3 and TIM-3 post-NAC underscore the augmentative immunotherapeutic promise of targeting these molecules, either individually or in combination, as a strategy, which may contribute to the improved management of early BC.
RESUMO
There is increasing awareness of an association between the uptake of the HIV integrase inhibitor, dolutegravir, in first-line antiretroviral regimens with unusual weight gain and development of the metabolic syndrome, particularly in African women. Although seemingly unexplored, the development of systemic inflammation linked to the putative pro-inflammatory activity of dolutegravir represents a plausible pathophysiological mechanism of this unusual weight gain. This possibility was explored in the current study undertaken to investigate the effects of dolutegravir (2.5−20 µg/mL) on several pro-inflammatory activities of neutrophils isolated from the blood of healthy, adult humans. These activities included the generation of reactive oxygen species (ROS), degranulation (elastase release) and alterations in the concentrations of cytosolic Ca2+ using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of neutrophils to dolutegravir alone resulted in the abrupt, dose-related, and significant (p < 0.0039−p < 0.0022) generation of ROS that was attenuated by the inclusion of the Ca2+-chelating agent, EGTA, or inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI), phospholipase C (U733122), myeloperoxidase (sodium azide) and phosphoinositol-3-kinase (wortmannin). In addition, exposure to dolutegravir augmented the release of elastase by stimulus-activated neutrophils. These pro-inflammatory effects of dolutegravir on neutrophils were associated with significant, rapid, and sustained increases in the concentrations of cytosolic Ca2+ that appeared to originate from the extracellular compartment, seemingly consistent with an ionophore-like property of dolutegravir. These findings are preliminary and necessitate verification in the clinical setting of HIV infection. Nevertheless, given the complex link between inflammation and obesity, these pro-inflammatory interactions of dolutegravir with neutrophils may contribute to unexplained weight gain, possibly via the development of insulin resistance.
Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Adulto , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Neutrófilos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Elastase Pancreática/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismoRESUMO
Dolutegravir is a highly potent HIV integrase strand transfer inhibitor that is recommended for first-line anti-retroviral treatment in all major treatment guidelines. A recent study has shown that people taking this class of anti-retroviral treatment have a substantially higher risk of early-onset cardiovascular disease, a condition shown previously to be associated with increased platelet reactivity. To date, few studies have explored the effects of dolutegravir on platelet activation. Accordingly, the current study was undertaken with the primary objective of investigating the effects of dolutegravir on the reactivity of human platelets in vitro. Platelet-rich plasma, isolated platelets, or buffy coat cell suspensions prepared from the blood of healthy adults were treated with dolutegravir (2.5-10 µg/ml), followed by activation with adenosine 5'-diphosphate (ADP), thrombin, or a thromboxane A2 receptor agonist U46619. Expression of platelet CD62P (P-selectin), formation of heterotypic neutrophil:platelet aggregates, and calcium (Ca2+) fluxes were measured using flow cytometry and fluorescence spectrometry, respectively. Dolutegravir caused dose-related potentiation of ADP-, thrombin- and U46619-activated expression of CD62P by platelets, as well as a significant increases in formation of neutrophil:platelet aggregates. These effects were paralleled by a spontaneous, receptor-independent elevation in cytosolic Ca2+ that appears to underpin the mechanism by which the antiretroviral agent augments the responsiveness of these cells to ADP, thrombin and U46619. The most likely mechanism of dolutegravir-mediated increases in platelet cytosolic Ca2+ relates to a combination of lipophilicity and divalent/trivalent metal-binding and/or chelating properties of the anti-retroviral agent. These properties are likely to confer ionophore-type activities on dolutegravir that would promote movement of Ca2+ across the plasma membrane, delivering the cation to the cytosol where it would augment Ca2+-dependent intracellular signaling mechanisms. These effects of dolutegravir may lead to hyper-activation of platelets which, if operative in vivo, may contribute to an increased risk for cardiometabolic co-morbidities.
Assuntos
Cálcio , Infecções por HIV , Adulto , Humanos , Trombina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ativação Plaquetária , Difosfato de Adenosina/farmacologia , Infecções por HIV/tratamento farmacológico , Ionóforos/farmacologiaRESUMO
Breast cancer cells exploit the up-regulation or down-regulation of immune checkpoint proteins to evade anti-tumor immune responses. To explore the possible involvement of this mechanism in promoting systemic immunosuppression, the pre-treatment levels of soluble co-inhibitory and co-stimulatory immune checkpoint molecules, as well as those of cytokines, chemokines, and growth factors were measured in 98 newly diagnosed breast cancer patients and compared with those of 45 healthy controls using multiplex bead array and ELISA technologies. Plasma concentrations of the co-stimulatory immune checkpoints, GITR, GITRL, CD27, CD28, CD40, CD80, CD86 and ICOS, as well as the co-inhibitory molecules, PD-L1, CTLA-4 and TIM-3, were all significantly lower in early breast cancer patients compared to healthy controls, as were those of HVEM and sTLR-2, whereas the plasma concentrations of CX3CL1 (fractalkine), CCL5 (RANTES) and those of the growth factors, M-CSF, FGF-21 and GDF-15 were significantly increased. However, when analyzed according to the patients' breast cancer characteristics, these being triple negative breast cancer (TNBC) vs. non-TNBC, tumor size, stage, nodal status and age, no significant differences were detected between the plasma levels of the various immune checkpoint molecules, cytokines, chemokines and growth factors. Additionally, none of these biomarkers correlated with pathological complete response. This study has identified low plasma levels of soluble co-stimulatory and co-inhibitory immune checkpoint molecules in newly diagnosed, non-metastatic breast cancer patients compared to healthy controls, which is a novel finding seemingly consistent with a state of systemic immune dysregulation. Plausible mechanisms include an association with elevated levels of M-CSF and CCL5, implicating the involvement of immune suppressor cells of the M2-macrophage/monocyte phenotype as possible drivers of this state of systemic immune quiescence/dysregulation.
Assuntos
Neoplasias da Mama , Proteínas de Checkpoint Imunológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Quimiocina CCL5/sangue , Feminino , Humanos , Proteínas de Checkpoint Imunológico/sangue , Fator Estimulador de Colônias de Macrófagos/sangueRESUMO
Neutrophils are important components of the innate immune system that mediate pathogen defense by multiple processes including phagocytosis, release of proteolytic enzymes, production of reactive oxygen species, and neutrophil extracellular trap formation. Abnormalities of neutrophil count and function have been described in the setting of HIV infection, with the majority of antiretroviral agents (ARVs), excluding zidovudine, having been reported to correct neutropenia. Questions still remain, however, about their impact on neutrophil function, particularly the possibility of persistent neutrophil activation, which could predispose people living with HIV to chronic inflammatory disorders, even in the presence of virally-suppressive treatment. In this context, the effects of protease inhibitors and integrase strand transfer inhibitors, in particular, on neutrophil function remain poorly understood and deserve further study. Besides mediating hemostatic functions, platelets are increasingly recognized as critical role players in the immune response against infection. In the setting of HIV, these cells have been found to harbor the virus, even in the presence of antiretroviral therapy (ART) potentially promoting viral dissemination. While HIV-infected individuals often present with thrombocytopenia, they have also been reported to have increased platelet activation, as measured by an upregulation of expression of CD62P (P-selectin), CD40 ligand, glycoprotein IV, and RANTES. Despite ART-mediated viral suppression, HIV-infected individuals reportedly have sustained platelet activation and dysfunction. This, in turn, contributes to persistent immune activation and an inflammatory vascular environment, seemingly involving neutrophil-platelet-endothelium interactions that increase the risk for development of comorbidities such as cardiovascular disease (CVD) that has become the leading cause of morbidity and mortality in HIV-infected individuals on treatment, clearly underscoring the importance of unraveling the possible etiologic roles of ARVs. In this context, abacavir and ritonavir-boosted lopinavir and darunavir have all been linked to an increased risk of CVD. This narrative review is therefore focused primarily on the role of neutrophils and platelets in HIV transmission and disease, as well as on the effect of HIV and the most common ARVs on the numbers and functions of these cells, including neutrophil-platelet-endothelial interactions.
Assuntos
Fármacos Anti-HIV/uso terapêutico , Plaquetas/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV/patogenicidade , Neutrófilos/efeitos dos fármacos , Animais , Plaquetas/imunologia , Plaquetas/metabolismo , Plaquetas/virologia , HIV/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno , Humanos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/virologia , Ativação Plaquetária/efeitos dos fármacos , Resultado do TratamentoRESUMO
This study probed the differential utilization of P2Y1 and P2Y12 receptors in mobilizing CD62P (P-selectin) from intracellular granules following activation of human platelets with adenosine 5'-diphosphate (ADP, 100 µmol·L-1) Platelet-rich plasma (PRP) was prepared from the blood of adult humans. CD62P was measured by flow cytometry following activation of PRP with ADP in the absence and presence of the selective antagonists of P2Y1 and P2Y12 receptors, MRS2500 and PSB0739 (both 0.155-10 µmol·L-1), respectively. Effects of the test agents on ADP-activated, CD62P-dependent formation of neutrophil:platelet (NP) aggregates were also measured by flow cytometry, while phosphatidylinositol 3-kinase (PI3K) activity was measured according to Akt1 phosphorylation in platelet lysates. Treatment with MRS2500 or PSB0739 at 10 µmol·L-1 almost completely attenuated (94.6% and 86% inhibition, respectively) ADP-activated expression of CD62P and also inhibited NP aggregate formation. To probe the mechanisms involved in P2Y1/P2Y12 receptor-mediated expression of CD62P, PRP was pre-treated with U73122 (phospholipase C (PLC) inhibitor), 2-aminoethoxy-diphenyl borate (2-APB, inositol triphosphate receptor antagonist), calmidazolium chloride (calmodulin inhibitor), or wortmannin (PI3K inhibitor). U73122, 2-APB, and wortmannin caused almost complete inhibition of ADP-activated expression of CD62P, while calmidazolium chloride caused statistically significant, partial inhibition. PSB0739, but not MRS2500, caused potent inhibition of PI3K-mediated phosphorylation of Akt1. Optimal mobilization of CD62P by ADP-stimulated platelets is critically dependent on the co-activation of platelet P2Y1 and P2Y12 receptors. P2Y12 receptor activation is the key event in activation of PI3K, while activation of the P2Y1 receptor appears to create a high cytosolic Ca2+ environment conducive to optimum PI3K activity.
RESUMO
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
RESUMO
AIM: We investigated the prognostic potential of pretherapy measurement of the neutrophil/lymphocyte ratio (NLR) in patients (n = 56) with non-small-cell lung cancer deemed suitable for treatment with nivolumab. MATERIALS & METHODS: This was a multicenter, noninterventional, retrospective data analysis, involving five oncology centers. RESULTS: Patients with prenivolumab NLR values of <5 and ≥5 had respective median overall survival (OS) values of 14.5 and 7.02 months (p = 0.0026). Patients with ≤2 and >2 metastatic sites had median OS values of 11.4 and 6.1 months, respectively (p = 0.0174). A Cox multiple regression model revealed baseline NLR ≥5 as the only variable significantly associated with decreased OS (p < 0.0447). CONCLUSION: Pretreatment elevated NLR values are associated with poor outcomes in patients with recurrent metastatic non-small-cell lung cancer treated with nivolumab.
RESUMO
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Assuntos
Proteína HMGB1/metabolismo , Neoplasias/metabolismo , Citocinas/metabolismo , Humanos , Neoplasias/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismoRESUMO
Notwithstanding the well-recognized involvement of chronic neutrophilic inflammation in the initiation phase of many types of epithelial cancers, a growing body of evidence has also implicated these cells in the pathogenesis of the later phases of cancer development, specifically progression and spread. In this setting, established tumors have a propensity to induce myelopoiesis and to recruit neutrophils to the tumor microenvironment (TME), where these cells undergo reprogramming and transitioning to myeloid-derived suppressor cells (MDSCs) with a pro-tumorigenic phenotype. In the TME, these MDSCs, via the production of a broad range of mediators, not only attenuate the anti-tumor activity of tumor-infiltrating lymphocytes, but also exclude these cells from the TME. Realization of the pro-tumorigenic activities of MDSCs of neutrophilic origin has resulted in the development of a range of adjunctive strategies targeting the recruitment of these cells and/or the harmful activities of their mediators of immunosuppression. Most of these are in the pre-clinical or very early clinical stages of evaluation. Notable exceptions, however, are several pharmacologic, allosteric inhibitors of neutrophil/MDSC CXCR1/2 receptors. These agents have entered late-stage clinical assessment as adjuncts to either chemotherapy or inhibitory immune checkpoint-targeted therapy in patients with various types of advanced malignancy. The current review updates the origins and identities of MDSCs of neutrophilic origin and their spectrum of immunosuppressive mediators, as well as current and pipeline MDSC-targeted strategies as potential adjuncts to cancer therapies. These sections are preceded by a consideration of the carcinogenic potential of neutrophils.
Assuntos
Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Transformação Celular Neoplásica , Gerenciamento Clínico , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , Inflamação/complicações , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neutrófilos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo , Resultado do TratamentoRESUMO
Systemic biomarkers of inflammation, including cytokines and chemokines, are potentially useful in the management of both HIV infection and non-AIDS-defining disorders. However, relatively little is known about the utility of measurement of circulating biomarkers of platelet activation as a strategy to monitor the efficacy of combination antiretroviral therapy (cART), as well as the persistence of systemic inflammation following virally-suppressive therapy in HIV-infected persons. These issues have been addressed in the current study to which a cohort consisting of 199 HIV-infected participants was recruited, 100 of whom were cART-naïve and the remainder cART-treated and virally-suppressed. Fifteen healthy control participants were included for comparison. The study focused on the effects of cART on the responsiveness of three biomarkers of platelet activation, specifically soluble CD40 ligand (sCD40L), sCD62P (P-selectin), and platelet-derived growth factor-BB (PDGF-BB), measured using multiplex suspension bead array technology. Most prominently sCD40L in particular, as well as sCD62P, were significantly elevated in the cART-naïve group relative to both the cART-treated and healthy control groups. However, levels of PDGF-BB were of comparable magnitude in both the cART-naïve and -treated groups, and significantly higher than those of the control group. Although remaining somewhat higher in the virally-suppressed group relative to healthy control participants, these findings identify sCD40L, in particular, as a potential biomarker of successful cART, while PDGF-BB may be indicative of persistent low-level antigenemia.
Assuntos
Becaplermina/metabolismo , Plaquetas/metabolismo , Ligante de CD40/metabolismo , Selectina-P/metabolismo , Adulto , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Citocinas/metabolismo , Feminino , HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Ativação PlaquetáriaRESUMO
Although bedaquiline has advanced the treatment of multidrug-resistant tuberculosis (TB), concerns remain about the cardiotoxic potential of this agent, albeit by unexplored mechanisms. Accordingly, we have investigated augmentation of the reactivity of human platelets in vitro as a potential mechanism of bedaquiline-mediated cardiotoxicity. Platelet-rich plasma (PRP) or isolated cells prepared from the blood of healthy, adult humans were treated with bedaquiline (0.625-10 µg/ml), followed by activation with adenosine 5'-diphosphate (ADP), thrombin or the thromboxane A2 receptor agonist (U46619). Expression of platelet CD62P (P-selectin), platelet aggregation, Ca2+ fluxes and phosphorylation of Akt1 were measured using flow cytometry, spectrophotometry, fluorescence spectrometry, and by ELISA procedures, respectively. Exposure to bedaquiline caused dose-related inhibition of ADP-activated, but not thrombin- or U46619-activated, expression of CD62P by platelets, achieving statistical significance at a threshold concentration of 5 µg/ml and was paralleled by inhibition of aggregation and Ca2+ mobilization. These ADP-selective inhibitory effects of bedaquiline on platelet activation were mimicked by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), implicating PI3-K as being a common target of both agents, a contention that was confirmed by the observed inhibitory effects of bedaquiline on the phosphorylation of Akt1 following activation of platelets with ADP. These apparent inhibitory effects of bedaquiline on the activity of PI3-K may result from the secondary cationic amphiphilic properties of this agent. If operative in vivo, these anti-platelet effects of bedaquiline may contribute to ameliorating the risk of TB-associated cardiovascular disease, but this remains to be explored in the clinical setting.
Assuntos
Difosfato de Adenosina/farmacologia , Diarilquinolinas/farmacologia , Infecções por HIV/sangue , Fosfatidilinositol 3-Quinases/metabolismo , Ativação Plaquetária , Infecções Pneumocócicas/sangue , Tuberculose/sangue , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Adulto , Antituberculosos/efeitos adversos , Antituberculosos/farmacologia , Sinalização do Cálcio , Diarilquinolinas/efeitos adversos , Relação Dose-Resposta a Droga , Estrenos/farmacologia , Feminino , Infecções por HIV/fisiopatologia , Humanos , Síndrome do QT Longo/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Selectina-P/biossíntese , Selectina-P/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Plasma Rico em Plaquetas , Infecções Pneumocócicas/fisiopatologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirrolidinonas/farmacologia , Trombina/farmacologia , Tuberculose/fisiopatologia , Wortmanina/farmacologia , Adulto JovemRESUMO
The advent of novel, innovative, and effective anti-cancer immunotherapies has engendered an era of renewed optimism among cancer specialists and their patients. Foremost among these successful immunotherapies are monoclonal antibodies (MAbs) which target immune checkpoint inhibitor (ICI) molecules, most prominently cytotoxic T-lymphocyte-associated protein (CTLA-4) and programmed cell death protein-1 (PD-1) and its major ligand, PD-L1. These immunotherapeutic agents are, however, often associated with the occurrence of immune-mediated toxicities known as immune-related adverse events (IRAEs). The incidence of severe toxicities increases substantially when these agents are used together, particularly with CTLA-4 in combination with PD-1 or PD-L1 antagonists. Accordingly, dissociating the beneficial anti-tumor therapeutic activity of these agents from the emergence of IRAEs represents a significant challenge to attaining the optimum efficacy of ICI-targeted immunotherapy of cancer. This situation is compounded by an increasing awareness, possibly unsurprising, that both the beneficial and harmful effects of ICI-targeted therapies appear to result from an over-reactive immune system. Nevertheless, this challenge may not be insurmountable. This contention is based on acquisition of recent insights into the role of the gut microbiome and its products as determinants of the efficacy of ICI-targeted immunotherapy, as well as an increasing realization of the enigmatic involvement of Th17 cells in both anti-tumor activity and the pathogenesis of some types of IRAEs. Evidence linking the beneficial and harmful activities of ICI-targeted immunotherapy, recent mechanistic insights focusing on the gut microbiome and Th17 cells, as well as strategies to attenuate IRAEs in the setting of retention of therapeutic activity, therefore represent the major thrusts of this review.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Neoplasias/terapia , Células Th17/efeitos dos fármacos , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Microbioma Gastrointestinal/imunologia , Humanos , Imunoterapia/efeitos adversos , Ipilimumab/efeitos adversos , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Células Th17/imunologia , Células Th17/metabolismoRESUMO
The current study evaluated the potential of clinical parameters and circulating biomarkers to distinguish sepsis from SIRS in patients admitted with systemic inflammation. Clinical parameters, leukocyte counts and platelets were measured on admission. Circulating C-reactive protein (CRP), procalcitonin (PCT) and cytokine concentrations were quantified using laser immunonephelometry, immunoluminescence and a Bio-Plex suspension bead array system respectively. Blood, sputum, urine, peritoneal and cerebrospinal fluid were sent for microscopy and culture. Based on clinical information and the results of microbiological testing, 62 patients were classified retrospectively into 2 groups, those with sepsis (nâ¯=â¯37) or SIRS (nâ¯=â¯25). Mean body temperature was higher and blood pressure lower in the sepsis patients. Circulating concentrations of CRP, PCT, interleukin (IL)-10 and IL-1 receptor antagonist (IL-1Ra) were significantly higher in patients with sepsis, with IL-10 identified as the best biomarker in differentiating sepsis from SIRS. The biomarkers that best predicted overall mortality were platelet counts >PCTâ¯≥â¯CRPâ¯>â¯IL-6â¯>â¯IL-1Ra. These findings demonstrate that patients with sepsis have significantly increased levels of the immunosuppressive/anti-inflammatory cytokines, IL-1Ra and IL-10, compared to those with SIRS, consistent with a more intense counteracting anti-inflammatory response, while a biomarker profile including platelets, PCT, CRP, IL-6 and IL-1Ra may be useful to predict mortality.
Assuntos
Proteína Antagonista do Receptor de Interleucina 1/sangue , Interleucina-10/sangue , Sepse/sangue , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Adulto , Biomarcadores/sangue , Diagnóstico Diferencial , Feminino , Humanos , Inflamação/sangue , Masculino , Valor Preditivo dos Testes , Curva ROC , Sensibilidade e Especificidade , Sepse/microbiologia , Sepse/mortalidade , Sobreviventes , Síndrome de Resposta Inflamatória Sistêmica/mortalidadeRESUMO
Although the usage of electronic (e)-cigarettes (EC) and similar devices has gained in popularity as an apparent smoking cessation strategy, serious concerns are emerging in relation to both the efficacy of this strategy, as well as the inappropriate use of these devices. While the comparative safety of e-cigarettes is based on the reasonable contention that the levels of inhaled toxicants present in the aerosols generated by these devices are considerably lower than those present in tobacco smoke, the perception that they are indeed relatively risk-free is being challenged on several fronts. Notwithstanding lack of convincing evidence of efficacy as a superior smoking cessation strategy, foremost among emerging concerns is the increasing use of electronic nicotine-delivery devices by young never-smokers. Other concerns include increasing levels of sophistication in the design and capacity of these devices in relation to nicotine content and delivery, the potential threat of manipulation of the contents of e-liquids, as well as other additives such as illicit drugs and other potentially toxic agents that can be vaporised. These issues, together with the potential risks to respiratory health, specifically "e-cigarette or vaping product use-associated lung injury" represent the major thrusts of this review.
RESUMO
Although the inclusion of the cationic amphiphilic, anti-mycobacterial agent, clofazimine, in the chemotherapeutic regimens of patients with multidrug-resistant tuberculosis (TB) has contributed to improved outcomes, concerns remain about the cardiotoxic potential of this agent. Accordingly, the current study was undertaken with the primary objective of investigating the effects of clofazimine, on the reactivity of human platelets in vitro, a seemingly unexplored, mechanism of cardiotoxicity. Platelet-rich plasma (PRP) prepared from the blood of healthy, adult humans was treated with clofazimine (0.625-10 mg/L), or the primary anti-TB agents, isoniazid and rifampicin (at final concentrations of 5 and 10 mg/L), followed by addition of either adenosine 5'-diphosphate (ADP) or thrombin and measurement of platelet activation according to the magnitude of expression of CD62P (P-selectin), as well as the CD62P-mediated formation of heterotypic neutrophil:platelet (NP) aggregates, using flow cytometry. Clofazimine, but neither isoniazid nor rifampicin, caused dose-related potentiation of both ADP- and thrombin-activated expression of CD62P by platelets, achieving statistical significance at threshold concentrations of 0.625 and 2.5 mg/L, respectively, as well as significant formation of N:P aggregates. These stimulatory effects of clofazimine on platelet activation were partly attenuated by pre-treatment of PRP with the membrane-stabilizing agent, α-tocopherol, possibly consistent with a membrane-disruptive mechanism. In conclusion, clofazimine, at concentrations within the therapeutic range, augments platelet activation in vitro, probably by a mechanism linked to membrane destabilization. If operative in vivo, these pro-thrombotic activities of clofazimine may predispose for development of microvascular occlusion, exacerbating an already existing high risk for development of TB-associated cardiovascular disease.