Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1009252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211335

RESUMO

Background: Erythrocyte invasion by P. falciparum involves functionally overlapping interactions between the parasite's ligands and the erythrocyte surface receptors. While some P. falciparum isolates necessarily engage the sialic acid (SA) moieties of the erythrocytes during the invasion, others use ligands whose binding is independent of SA for successful invasion. Deciphering the major pathway used by P. falciparum clinical isolates represent a key step toward developing an efficient blood stage malaria vaccine. Methods: We collected a total of 156 malaria-infected samples from Ghanaian children aged 2 to 14 years and used a two-color flow cytometry-based invasion assay to assess the invasion phenotype diversity of Ghanaian P. falciparum clinical isolates. Anti-human CR1 antibodies were used to determine the relative contribution of the PfRh4-CR1 interaction in the parasites invasion phenotype and RT-qPCR was used to assess the expression levels of key invasion-related ligands. Results: Our findings show no clear association between demographic or clinical data and existing reports on the malaria transmission intensity. The complete invasion data obtained for 156 isolates, showed the predominance of SA-independent pathways in Ghanaian clinical isolates. Isolates from Hohoe and Navrongo had the highest diversity in invasion profile. Our data also confirmed that the PfRh4-CR1 mediated alternative pathway is important in Ghanaian clinical isolates. Furthermore, the transcript levels of ten invasion-related genes obtained in the study showed little variations in gene expression profiles within and between parasite populations across sites. Conclusion: Our data suggest a low level of phenotypic diversity in Ghanaian clinical isolates across areas of varying endemicity and further highlight its importance in the quest for new intervention strategies, such as the investigation of blood-stage vaccine targets, particularly those targeting specific pathways and able to trigger the stimulation of broadly neutralizing invasion antibodies.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Gana/epidemiologia , Ligantes , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Plasmodium falciparum , Proteínas de Protozoários
2.
Front Cell Infect Microbiol ; 12: 997418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204649

RESUMO

Ex vivo phenotyping of P. falciparum erythrocyte invasion diversity is important in the identification and down selection of potential malaria vaccine targets. However, due to the lack of appropriate laboratory facilities in remote areas of endemic countries, direct processing of P. falciparum clinical isolates is usually not feasible. Here, we investigated the combined effect of short-term cryopreservation and thawing processes on the ex vivo invasion phenotypes of P. falciparum isolates. Ex-vivo or in vitro invasion phenotyping assays were performed with P. falciparum clinical isolates prior to or following culture adaptation, respectively. All isolates were genotyped at Day 0 for parasite clonality. Subsequently, isolates that were successfully culture-adapted were genotyped again at Days 7, 15, 21, and 28-post adaptation. Invasion phenotyping assays were performed in isogenic isolates revived at different time points (3, 6, and 12 months) post-cryopreservation and the resulting data were compared to that from ex-vivo invasion data of matched isogenic parental isolates. We also show that short-term culture adaptation selects for parasite clonality and could be a driving force for variation in invasion phenotypes as compared to ex vivo data where almost all parasite clones of a given isolate are present. Interestingly, our data show little variation in the parasites' invasion phenotype following short-term cryopreservation. Altogether, our data suggest that short-term cryopreservation of uncultured P. falciparum clinical isolates is a reliable mechanism for storing parasites for future use.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Criopreservação , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética
3.
Sci Rep ; 11(1): 7129, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782439

RESUMO

Human erythrocytes are indispensable for Plasmodium falciparum development. Unlike other eukaryotic cells, there is no existing erythroid cell line capable of supporting long-term P. falciparum in vitro experiments. Consequently, invasion phenotyping experiments rely on erythrocytes of different individuals. However, the contribution of the erythrocytes variation in influencing invasion rates remains unknown, which represents a challenge for conducting large-scale comparative studies. Here, we used erythrocytes of different blood groups harboring different hemoglobin genotypes to assess the relative contribution of blood donor variability in P. falciparum invasion phenotyping assays. For each donor, we investigated the relationship between parasite invasion phenotypes and erythrocyte phenotypic characteristics, including the expression levels of surface receptors (e.g. the human glycophorins A and C, the complement receptor 1 and decay accelerating factor), blood groups (e.g. ABO/Rh system), and hemoglobin genotypes (e.g. AA, AS and AC). Across all donors, there were significant differences in invasion efficiency following treatment with either neuraminidase, trypsin or chymotrypsin relative to the control erythrocytes. Primarily, we showed that the levels of key erythrocyte surface receptors and their sensitivity to enzyme treatment significantly differed across donors. However, invasion efficiency did not correlate with susceptibility to enzyme treatment or with the levels of the selected erythrocyte surface receptors. Furthermore, we found no relationship between P. falciparum invasion phenotype and blood group or hemoglobin genotype. Altogether, our findings demonstrate the need to consider erythrocyte donor uniformity and anticipate challenges associated with blood donor variability in early stages of large-scale study design.


Assuntos
Doadores de Sangue , Plasmodium falciparum/patogenicidade , Humanos , Fenótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32266165

RESUMO

Nearly half of the genes in the Plasmodium falciparum genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as P. falciparum Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry. Affinity-purified α-PfATRP rabbit antibodies specifically recognized the recombinant protein. Immunofluorescence assays revealed that α-PfATRP rabbit antibodies reacted with P. falciparum schizonts. Anti-PfATRP antibody exhibited peripheral staining patterns around the merozoites. Given the localization of PfATRP in merozoites, we tested for an egress phenotype during schizont arrest assays and demonstrated that native PfATRP is inaccessible on the surface of merozoites in intact schizonts. Dual immunofluorescence assays with markers for the inner membrane complex (IMC) and microtubules suggest partial colocalization in both asexual and sexual stage parasites. Using the soluble recombinant PfATRP in a screen of plasma samples revealed that malaria-infected children have naturally acquired PfATRP-specific antibodies.


Assuntos
Proteínas do Domínio Armadillo , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Anticorpos Antiprotozoários , Antígenos de Protozoários , Eritrócitos , Merozoítos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas do Domínio Armadillo/genética , Humanos
5.
Sci Rep ; 10(1): 1498, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001728

RESUMO

Despite significant progress in controlling malaria, the disease remains a global health burden. The intricate interactions the parasite Plasmodium falciparum has with its host allows it to grow and multiply in human erythrocytes. The mechanism by which P. falciparum merozoites invade human erythrocytes is complex, involving merozoite proteins as well as erythrocyte surface proteins. Members of the P. falciparum reticulocyte binding-like protein homolog (PfRh) family of proteins play a pivotal role in merozoite invasion and hence are important targets of immune responses. Domains within the PfRh2b protein have been implicated in its ability to stimulate natural protective antibodies in patients. More specifically, a 0.58 kbp deletion, at the C-terminus has been reported in high frequencies in Senegalese and Southeast Asian parasite populations, suggesting a possible role in immune evasion. We analysed 1218 P. falciparum clinical isolates, and the results show that this deletion is present in Ghanaian parasite populations (48.5% of all isolates), with Kintampo (hyper-endemic, 53.2%), followed by Accra (Hypo-endemic, 50.3%), Cape Coast (meso-endemic, 47.9%) and Sogakope (meso-endemic, 43.15%). Further analysis of parasite genomes stored in the MalariaGEN database revealed that the deletion variant was common across transmission areas globally, with an overall frequency of about 27.1%. Interestingly, some parasite isolates possessed mixed PfRh2b deletion and full-length alleles. We further showed that levels of antibodies to the domain of PfRh2 protein were similar to antibody levels of PfRh5, indicating it is less recognized by the immune system.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Eritrócitos/parasitologia , Feminino , Dosagem de Genes , Duplicação Gênica , Genes de Protozoários , Gana/epidemiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Evasão da Resposta Imune/genética , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Masculino , Merozoítos/genética , Merozoítos/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Adulto Jovem
7.
Parasit Vectors ; 10(1): 33, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28103905

RESUMO

BACKGROUND: Genetic analyses of the malaria parasite population and its temporal and spatial dynamics could provide an assessment of the effectiveness of disease control strategies. The genetic diversity of Plasmodium falciparum has been poorly documented in Senegal, and limited data are available from the Kedougou Region. This study examines the spatial and temporal variation of the genetic diversity and complexity of P. falciparum infections in acute febrile patients in Kedougou, southeastern Senegal. A total of 263 sera from patients presenting with acute febrile illness and attending Kedougou health facilities between July 2009 and July 2013 were obtained from a collection established as part of arbovirus surveillance in Kedougou. Samples identified as P. falciparum by nested PCR were characterized for their genetic diversity and complexity using msp-1 and msp-2 polymorphic markers. RESULTS: Samples containing only P. falciparum accounted for 60.83% (160/263) of the examined samples. All three msp-1 allelic families (K1, MAD20 and RO33) and two msp-2 allelic families (FC27 and 3D7) were detected in all villages investigated over the 5-year collection period. The average genotype per allelic family was comparable between villages. Frequencies of msp-1 and msp-2 allelic types showed no correlation with age (Fisher's exact test, P = 0.59) or gender (Fisher's exact test, P = 0.973), and were similarly distributed throughout the 5-year sampling period (Fisher's exact test, P = 0.412) and across villages (Fisher's exact test, P = 0.866). Mean multiplicity of infection (MOI) for both msp-1 and msp-2 was highest in Kedougou village (2.25 and 2.21, respectively) and among younger patients aged ≤ 15 years (2.12 and 2.00, respectively). The mean MOI was highest in 2009 and decreased progressively onward. CONCLUSION: Characterization of the genetic diversity and complexity of P. falciparum infections in Kedougou revealed no spatio-temporal variation in the genetic diversity of P. falciparum isolates. However, mean MOI varied with time of sera collection and decreased over the course of the study (July 2009 to July 2013). This suggests a slow progressive decrease of malaria transmission intensity in Kedougou Region despite the limited impact of preventive and control measures implemented by the National Malaria Control Programme on malaria morbidity and mortality.


Assuntos
Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Alelos , Antígenos de Protozoários/genética , Humanos , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Senegal , Análise de Sequência de DNA , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA