RESUMO
While the rapid advancement of immunotherapies has revolutionized cancer treatment, only a small fraction of patients derive clinical benefit. Eradication of large, established tumors appears to depend on engaging and activating both innate and adaptive immune system components to mount a rigorous and comprehensive immune response. Identifying such agents is a high unmet medical need, because they are sparse in the therapeutic landscape of cancer treatment. Here, we report that IL-36 cytokine can engage both innate and adaptive immunity to remodel an immune-suppressive tumor microenvironment (TME) and mediate potent antitumor immune responses via signaling in host hematopoietic cells. Mechanistically, IL-36 signaling modulates neutrophils in a cell-intrinsic manner to greatly enhance not only their ability to directly kill tumor cells but also promote T and NK cell responses. Thus, while poor prognostic outcomes are typically associated with neutrophil enrichment in the TME, our results highlight the pleiotropic effects of IL-36 and its therapeutic potential to modify tumor-infiltrating neutrophils into potent effector cells and engage both the innate and adaptive immune system to achieve durable antitumor responses in solid tumors.
Assuntos
Imunidade Adaptativa , Neutrófilos , Humanos , Citocinas , Terapia de Imunossupressão , ImunoterapiaRESUMO
Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimer's disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with in vitro and in vivo characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased in vitro and in vivo stability of TREM2 contribute to loss of function in disease.
Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glicoproteínas de Membrana/química , Proteínas Mutantes/química , Receptores Imunológicos/química , Doença de Alzheimer/patologia , Cristalografia por Raios X , Células Dendríticas/química , Células Dendríticas/patologia , Variação Genética , Humanos , Ligantes , Macrófagos/química , Macrófagos/patologia , Glicoproteínas de Membrana/genética , Microglia/química , Microglia/patologia , Proteínas Mutantes/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Osteoclastos/química , Osteoclastos/patologia , Conformação Proteica , Domínios Proteicos/genética , Receptores Imunológicos/genéticaRESUMO
JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.
Assuntos
TYK2 Quinase/química , TYK2 Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Humanos , Janus Quinase 1/química , Janus Quinase 2/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , TYK2 Quinase/genéticaRESUMO
We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. At well-tolerated doses, compound 28 leads to significant growth inhibition of MOLM13 xenografts in nude mice, and the activity correlates with inhibition of STAT5 and Rb phosphorylation.
Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/síntese química , Naftiridinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Cães , Descoberta de Drogas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Macaca fascicularis , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Ratos , Relação Estrutura-Atividade , Células U937 , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
Retinol-binding protein 4 (RBP4) transports retinol from the liver to extrahepatic tissues, and RBP4 lowering is reported to improve insulin sensitivity in mice. We have identified A1120, a high affinity (K(i) = 8.3 nm) non-retinoid ligand for RBP4, which disrupts the interaction between RBP4 and its binding partner transthyretin. Analysis of the RBP4-A1120 co-crystal structure reveals that A1120 induces critical conformational changes at the RBP4-transthyretin interface. Administration of A1120 to mice lowers serum RBP4 and retinol levels but, unexpectedly, does not improve insulin sensitivity. In addition, we show that Rpb4(-/-) mice display normal insulin sensitivity and are not protected from high fat diet-induced insulin resistance. We conclude that lowering RBP4 levels does not improve insulin sensitivity in mice. Therefore, RBP4 lowering may not be an effective strategy for treating diabetes.