Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 633: 157-166, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29573682

RESUMO

Free-living amoebae (FLA) are ubiquitous organisms present in various natural and artificial environments, such as drinking water storage towers (DWST). Some FLA, such as Acanthamoeba sp., Naegleria fowleri, and Balamuthia mandrillaris, can cause severe infections at ocular or cerebral level in addition to being potential reservoirs of other pathogens. In this work, the abundance and diversity of FLA was evaluated in two sampling campaigns: one performed over five seasons in three DWST at three different levels (surface, middle and bottom) in water and biofilm using microscopy and PCR, and one based on the kinetics analysis in phase contrast and confocal microscopy of biofilm samples collected every two weeks during a 3-month period at the surface and at the bottom of a DWST. In the seasonal study, the FLA were detected in each DWST water in densities of ~20 to 25amoebaeL-1. A seasonal variation of amoeba distribution was observed in water samples, with maximal densities in summer at ~30amoebaeL-1 and minimal densities in winter at ~16amoebaeL-1. The FLA belonging to the genus Acanthamoeba were detected in two spring sampling campaigns, suggesting a possible seasonal appearance of this potentially pathogenic amoeba. Interestingly, a 1 log increase of amoebae density was observed in biofilm samples collected at the surface of all DWST compared to the middle and the bottom where FLA were at 0.1-0.2amoebae/cm2. In the kinetics study, an increase of amoebae density, total cell density, and biofilm thickness was observed as a function of time at the surface of the DWST, but not at the bottom. To our knowledge, this study describes for the first time a marked higher FLA density in biofilms collected at upper water levels in DWST, constituting a potential source of pathogenic micro-organisms.


Assuntos
Amoeba/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Água Potável/parasitologia , Monitoramento Ambiental , Acanthamoeba/crescimento & desenvolvimento , Biofilmes/classificação , Abastecimento de Água/estatística & dados numéricos
2.
Water Res ; 132: 340-349, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29353197

RESUMO

Drinking water can contain low levels of micropollutants, as well as disinfection by-products (DBPs) that form from the reaction of disinfectants with organic and inorganic matter in water. Due to the complex mixture of trace chemicals in drinking water, targeted chemical analysis alone is not sufficient for monitoring. The current study aimed to apply in vitro bioassays indicative of adaptive stress responses to monitor the toxicological profiles and the formation of DBPs in three drinking water distribution systems in France. Bioanalysis was complemented with chemical analysis of forty DBPs. All water samples were active in the oxidative stress response assay, but only after considerable sample enrichment. As both micropollutants in source water and DBPs formed during treatment can contribute to the effect, the bioanalytical equivalent concentration (BEQ) approach was applied for the first time to determine the contribution of DBPs, with DBPs found to contribute between 17 and 58% of the oxidative stress response. Further, the BEQ approach was also used to assess the contribution of volatile DBPs to the observed effect, with detected volatile DBPs found to have only a minor contribution as compared to the measured effects of the non-volatile chemicals enriched by solid-phase extraction. The observed effects in the distribution systems were below any level of concern, quantifiable only at high enrichment and not different from bottled mineral water. Integrating bioanalytical tools and the BEQ mixture model for monitoring drinking water quality is an additional assurance that chemical monitoring is not overlooking any unknown chemicals or transformation products and can help to ensure chemically safe drinking water.


Assuntos
Bioensaio/métodos , Desinfetantes/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Desinfetantes/toxicidade , Desinfecção , Água Potável/química , França , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Células MCF-7 , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA