Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 69, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33641676

RESUMO

BACKGROUND: Hospital-acquired pneumonia (HAP) is a common problem in intensive care medicine and the patient outcome depends on the fast beginning of adequate antibiotic therapy. Until today pathogen identification is performed using conventional microbiological methods with turnaround times of at least 24 h for the first results. It was the aim of this study to investigate the potential of headspace analyses detecting bacterial species-specific patterns of volatile organic compounds (VOCs) for the rapid differentiation of HAP-relevant bacteria. METHODS: Eleven HAP-relevant bacteria (Acinetobacter baumanii, Acinetobacter pittii, Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Serratia marcescens) were each grown for 6 hours in Lysogeny Broth and the headspace over the grown cultures was investigated using multi-capillary column-ion mobility spectrometry (MCC-IMS) to detect differences in the VOC composition between the bacteria in the panel. Peak areas with changing signal intensities were statistically analysed, including significance testing using one-way ANOVA or Kruskal-Wallis test (p < 0.05). RESULTS: 30 VOC signals (23 in the positive ion mode and 7 in the negative ion mode of the MCC-IMS) showed statistically significant differences in at least one of the investigated bacteria. The VOC patterns of the bacteria within the HAP panel differed substantially and allowed species differentiation. CONCLUSIONS: MCC-IMS headspace analyses allow differentiation of bacteria within HAP-relevant panel after 6 h of incubation in a complex fluid growth medium. The method has the potential to be developed towards a feasible point-of-care diagnostic tool for pathogen differentiation on HAP.


Assuntos
Bactérias/química , Pneumonia Associada a Assistência à Saúde/microbiologia , Espectrometria de Mobilidade Iônica , Técnicas Microbiológicas/métodos , Bactérias/isolamento & purificação , Pneumonia Associada a Assistência à Saúde/diagnóstico , Humanos , Técnicas Microbiológicas/instrumentação , Especificidade da Espécie , Compostos Orgânicos Voláteis/análise
2.
mSphere ; 4(6)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31826973

RESUMO

AFP is an antimicrobial peptide (AMP) produced by the filamentous fungus Aspergillus giganteus and is a very potent inhibitor of fungal growth that does not affect the viability of bacteria, plant, or mammalian cells. It targets chitin synthesis and causes plasma membrane permeabilization in many human- and plant-pathogenic fungi, but its exact mode of action is not known. After adoption of the "damage-response framework of microbial pathogenesis" regarding the analysis of interactions between AMPs and microorganisms, we have recently proposed that the cytotoxic capacity of a given AMP depends not only on the presence/absence of its target(s) in the host and the AMP concentration applied but also on other variables, such as microbial survival strategies. We show here using the examples of three filamentous fungi (Aspergillus niger, Aspergillus fumigatus, and Fusarium graminearum) and two yeasts (Saccharomyces cerevisiae and Pichia pastoris) that the important parameters defining the AFP susceptibilities of these fungi are (i) the presence/absence of glycosylceramides, (ii) the presence/absence of Δ3(E) desaturation of the fatty acid chain therein, and (iii) the (dis)ability of these fungi to respond to AFP inhibitory effects with the fortification of their cell walls via increased chitin and ß-(1,3)-glucan synthesis. These observations support the idea of the adoption of the damage-response framework to holistically understand the outcome of AFP inhibitory effects.IMPORTANCE Our data suggest a fundamental role of glycosylceramides in the susceptibility of fungi to AFP. We discovered that only a minor structural difference in these molecules-namely, the saturation level of their fatty acid chain, controlled by a 2-hydroxy fatty N-acyl-Δ3(E)-desaturase-represents a key to understanding the inhibitory activity of AFP. As glycosylceramides are important components of fungal plasma membranes, we propose a model which links AFP-mediated inhibition of chitin synthesis in fungi with its potential to disturb plasma membrane integrity.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Ceramidas/análise , Proteínas Fúngicas/farmacologia , Fungos/química , Fungos/efeitos dos fármacos , Quitina/análise , Fungos/crescimento & desenvolvimento , Espectrometria de Massas , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 9(1): 9368, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249367

RESUMO

Cyclophilins (CYPs) are a group of ubiquitous prolyl cis/trans isomerases (PPIases). It was shown that plants possess the most diverse CYP families and that these are abundant in the phloem long-distance translocation stream. Since phloem exudate showed PPIase activity, three single-domain CYPs that occur in phloem samples from Brassica napus were characterised on functional and structural levels. It could be shown that they exhibit isomerase activity and that this activity is controlled by a redox regulation mechanism, which has been postulated for divergent CYPs. The structure determination by small-angle X-ray scattering experiments revealed a conserved globular shape. In addition, the high-resolution crystal structure of BnCYP19-1 was resolved and refined to 2.0 Å resolution, and the active sites of related CYPs as well as substrate binding were modelled. The obtained data and results support the hypothesis that single domain phloem CYPs are active phloem PPIases that may function as chaperones.


Assuntos
Brassica napus/enzimologia , Ciclofilinas/química , Ciclofilinas/metabolismo , Floema/enzimologia , Domínios Proteicos , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Ativação Enzimática , Cinética , Modelos Moleculares , Oxirredução , Conformação Proteica , Relação Estrutura-Atividade
4.
Front Microbiol ; 8: 1941, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067007

RESUMO

Microalga are of high relevance for the global carbon cycling and it is well-known that they are associated with a microbiota. However, it remains unclear, if the associated microbiota, often found in phycosphere biofilms, is specific for the microalga strains and which role individual bacterial taxa play. Here we provide experimental evidence that Chlorella saccharophila, Scenedesmus quadricauda, and Micrasterias crux-melitensis, maintained in strain collections, are associated with unique and specific microbial populations. Deep metagenome sequencing, binning approaches, secretome analyses in combination with RNA-Seq data implied fundamental differences in the gene expression profiles of the microbiota associated with the different microalga. Our metatranscriptome analyses indicates that the transcriptionally most active bacteria with respect to key genes commonly involved in plant-microbe interactions in the Chlorella (Trebouxiophyceae) and Scenedesmus (Chlorophyceae) strains belong to the phylum of the α-Proteobacteria. In contrast, in the Micrasterias (Zygnematophyceae) phycosphere biofilm bacteria affiliated with the phylum of the Bacteroidetes showed the highest gene expression rates. We furthermore show that effector molecules known from plant-microbe interactions as inducers for the innate immunity are already of relevance at this evolutionary early plant-microbiome level.

5.
Sci Rep ; 7(1): 1514, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473712

RESUMO

Cyclophilins (CYPs) are a group of ubiquitous proteins characterized by their ability to bind to the immunosuppressive drug cyclosporin A. The CYP family occurs in a wide range of organisms and contains a conserved peptidyl-prolyl cis/trans isomerase domain. In addition to fulfilling a basic role in protein folding, CYPs may also play diverse important roles, e.g. in protein degradation, mRNA processing, development, and stress responses. We performed a genome-wide database survey and identified a total of 94 CYP genes encoding 91 distinct proteins. Sequence alignment analysis of the putative BnCYP cyclophilin-like domains revealed highly conserved motifs. By using RNA-Seq, we could verify the presence of 77 BnCYP genes under control conditions. To identify phloem-specific BnCYP proteins in a complementary approach, we used LC-MS/MS to determine protein abundances in leaf and phloem extracts. We detected 26 BnCYPs in total with 12 being unique to phloem sap. Our analysis provides the basis for future studies concentrating on the functional characterization of individual members of this gene family in a plant of dual importance: as a crop and a model system for polyploidization and long-distance signalling.


Assuntos
Brassica napus/genética , Biologia Computacional/métodos , Ciclofilinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Ciclofilinas/química , Ciclofilinas/metabolismo , Genes de Plantas , Genoma de Planta , Floema/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia Estrutural de Proteína , Frações Subcelulares/metabolismo
6.
Plant Methods ; 12: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019668

RESUMO

BACKGROUND: Grafting is a well-established technique for studying long-distance transport and signalling processes in higher plants. While oilseed rape has been the subject of comprehensive analyses of xylem and phloem sap to identify macromolecules potentially involved in long-distance information transfer, there is currently no standardised grafting method for this species published. RESULTS: We developed a straightforward collar-free grafting protocol for Brassica napus plants with high reproducibility and success rates. Micrografting of seedlings was done on filter paper. Grafting success on different types of regeneration media was measured short-term after grafting and as the long-term survival rate (>14 days) of grafts after the transfer to hydroponic culture or soil. CONCLUSIONS: We compared different methods for grafting B. napus seedlings. Grafting on filter paper with removed cotyledons, a truncated hypocotyl and the addition of low levels of sucrose under long day conditions allowed the highest grafting success. A subsequent long-term hydroponic cultivation of merged grafts showed highest survival rates and best reproducibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA