Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
JACS Au ; 4(3): 958-973, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559719

RESUMO

PlaF is a membrane-bound phospholipase A1 from Pseudomonas aeruginosa that is involved in remodeling membrane glycerophospholipids (GPLs) and modulating virulence-associated signaling and metabolic pathways. Previously, we identified the role of medium-chain free fatty acids (FFAs) in inhibiting PlaF activity and promoting homodimerization, yet the underlying molecular mechanism remained elusive. Here, we used unbiased and biased molecular dynamics simulations and free energy computations to assess how PlaF interacts with FFAs localized in the water milieu surrounding the bilayer or within the bilayer and how these interactions regulate PlaF activity. Medium-chain FFAs localized in the upper bilayer leaflet can stabilize inactive dimeric PlaF, likely through interactions with charged surface residues, as has been experimentally validated. Potential of mean force (PMF) computations indicate that membrane-bound FFAs may facilitate the activation of monomeric PlaF by lowering the activation barrier for changing into a tilted, active configuration. We estimated that the coupled equilibria of PlaF monomerization-dimerization and tilting at the physiological concentration of PlaF lead to the majority of PlaF forming inactive dimers when in a cell membrane loaded with decanoic acid (C10). This is in agreement with a suggested in vivo product feedback loop and gas chromatography-mass spectrometry profiling results, indicating that PlaF catalyzes the release of C10 from P. aeruginosa membranes. Additionally, we found that C10 in the water milieu can access the catalytic site of active monomeric PlaF, contributing to the competitive component of C10-mediated PlaF inhibition. Our study provides mechanistic insights into how medium-chain FFAs may regulate the activity of PlaF, a potential bacterial drug target.

2.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570969

RESUMO

Toxic breakdown products of young Camelina sativa (L.) Crantz, glucosinolates can eliminate microorganisms in the soil. Since microorganisms are essential for phosphate cycling, only insensitive microorganisms with phosphate-solubilizing activity can improve C. sativa's phosphate supply. In this study, 33P-labeled phosphate, inductively coupled plasma mass spectrometry and pot experiments unveiled that not only Trichoderma viride and Pseudomonas laurentiana used as phosphate-solubilizing inoculants, but also intrinsic soil microorganisms, including Penicillium aurantiogriseum, and the assemblies of root-colonizing microorganisms solubilized as well phosphate from apatite, trigger off competitive behavior between the organisms. Driving factors in the competitiveness are plant and microbial secondary metabolites, while glucosinolates of Camelina and their breakdown products are regarded as key compounds that inhibit the pathogen P. aurantiogriseum, but also seem to impede root colonization of T. viride. On the other hand, fungal diketopiperazine combined with glucosinolates is fatal to Camelina. The results may contribute to explain the contradictory effects of phosphate-solubilizing microorganisms when used as biofertilizers. Further studies will elucidate impacts of released secondary metabolites on coexisting microorganisms and plants under different environmental conditions.

3.
Plant Methods ; 18(1): 114, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183136

RESUMO

BACKGROUND: Living cells maintain and adjust structural and functional integrity by continual synthesis and degradation of metabolites and macromolecules. The maintenance and adjustment of thylakoid membrane involve turnover of photosynthetic pigments along with subunits of protein complexes. Quantifying their turnover is essential to understand the mechanisms of homeostasis and long-term acclimation of photosynthetic apparatus. Here we report methods combining whole-plant long-term 13CO2 labeling and liquid chromatography - mass spectrometry (LC-MS) analysis to determine the size of non-labeled population (NLP) of carotenoids and chlorophylls (Chl) in leaf pigment extracts of partially 13C-labeled plants. RESULTS: The labeling chamber enabled parallel 13CO2 labeling of up to 15 plants of Arabidopsis thaliana with real-time environmental monitoring ([CO2], light intensity, temperature, relative air humidity and pressure) and recording. No significant difference in growth or photosynthetic pigment composition was found in leaves after 7-d exposure to normal CO2 (~ 400 ppm) or 13CO2 in the labeling chamber, or in ambient air outside the labeling chamber (control). Following chromatographic separation of the pigments and mass peak assignment by high-resolution Fourier-transform ion cyclotron resonance MS, mass spectra of photosynthetic pigments were analyzed by triple quadrupole MS to calculate NLP. The size of NLP remaining after the 7-d 13CO2 labeling was ~ 10.3% and ~ 11.5% for all-trans- and 9-cis-ß-carotene, ~ 21.9% for lutein, ~ 18.8% for Chl a and 33.6% for Chl b, highlighting non-uniform turnover of these pigments in thylakoids. Comparable results were obtained in all replicate plants of the 13CO2 labeling experiment except for three that were showing anthocyanin accumulation and growth impairment due to insufficient water supply (leading to stomatal closure and less 13C incorporation). CONCLUSIONS: Our methods allow 13CO2 labeling and estimation of NLP for photosynthetic pigments with high reproducibility despite potential variations in [13CO2] between the experiments. The results indicate distinct turnover rates of carotenoids and Chls in thylakoid membrane, which can be investigated in the future by time course experiments. Since 13C enrichment can be measured in a range of compounds, long-term 13CO2 labeling chamber, in combination with appropriate MS methods, facilitates turnover analysis of various metabolites and macromolecules in plants on a time scale of hours to days.

4.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536643

RESUMO

Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.


Assuntos
Fosfolipídeos , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Glicerofosfolipídeos/metabolismo , Proteínas de Membrana , Fosfolipases A , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35063652

RESUMO

Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and biofilm-mediated multidrug resistance. It produces and secretes various toxins with hydrolytic activities including phospholipases. However, the function of intracellular phospholipases for bacterial virulence has still not been established. Here, we demonstrate that the hypothetical gene pa2927 of P. aeruginosa encodes a novel phospholipase B named PaPlaB. At reaction equilibrium, PaPlaB purified from detergent-solubilized membranes of E. coli released fatty acids (FAs) from sn-1 and sn-2 positions of phospholipids at the molar ratio of 51:49. PaPlaB in vitro hydrolyzed P. aeruginosa phospholipids reconstituted in detergent micelles and phospholipids reconstituted in vesicles. Cellular localization studies indicate that PaPlaB is a cell-bound PLA of P. aeruginosa and that it is peripherally bound to both membranes in E. coli, yet the active form was predominantly associated with the cytoplasmic membrane of E. coli. Decreasing the concentration of purified and detergent-stabilized PaPlaB leads to increased enzymatic activity, and at the same time triggers oligomer dissociation. We showed that the free FA profile, biofilm amount and architecture of the wild type and ΔplaB differ. However, it remains to be established how the PLB activity of PaPlaB is regulated by homooligomerisation and how it relates to the phenotype of the P. aeruginosa ΔplaB. This novel putative virulence factor contributes to our understanding of phospholipid degrading enzymes and might provide a target for new therapeutics against P. aeruginosa biofilms.


Assuntos
Lisofosfolipase , Pseudomonas aeruginosa , Biofilmes , Detergentes/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Lisofosfolipase/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Plant Mol Biol ; 107(3): 177-206, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34677706

RESUMO

Tomato is one of the most produced crop plants on earth and growing in the fields and greenhouses all over the world. Breeding with known traits of wild species can enhance stress tolerance of cultivated crops. In this study, we investigated responses of the transcriptome as well as primary and secondary metabolites in leaves of a cultivated and a wild tomato to several abiotic stresses such as nitrogen deficiency, chilling or warmer temperatures, elevated light intensities and combinations thereof. The wild species responded different to varied temperature conditions compared to the cultivated tomato. Nitrogen deficiency caused the strongest responses and induced in particular the secondary metabolism in both species but to much higher extent in the cultivated tomato. Our study supports the potential of a targeted induction of valuable secondary metabolites in green residues of horticultural production, that will otherwise only be composted after fruit harvest. In particular, the cultivated tomato showed a strong induction in the group of mono caffeoylquinic acids in response to nitrogen deficiency. In addition, the observed differences in stress responses between cultivated and wild tomato can lead to new breeding targets for better stress tolerance.


Assuntos
Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Luz , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Metabolismo Secundário , Temperatura
7.
J Agric Food Chem ; 69(23): 6431-6443, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34081868

RESUMO

The horticultural production of bell peppers generates large quantities of residual biomass. Abiotic stress stimulates the production of protective flavonoids, so the deliberate application of stress to the plants after fruit harvest could provide a strategy to valorize horticultural residuals by increasing flavonoid concentrations, facilitating their industrial extraction. Here we exposed two Capsicum cultivars, a chilli and a bell pepper, to cold and salt stress and combinations thereof to determine their valorization potential. Noninvasive image-based phenotyping and multiparametric fluorescence measurements indicated that all stress treatments inhibited plant growth and reduced the leaf chlorophyll fluorescence index, with the chilli cultivar showing greater sensitivity. The fluorescence-based FLAV index allowed the noninvasive assessment of foliar luteolin glycosides. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis showed that moderate cold increased the levels of two foliar antioxidant luteolin glycosides in both cultivars, with bell pepper containing the highest amounts (induced to maximum 5.5 mg g-1 DW cynaroside and 37.0 mg g-1 DW graveobioside A) after combined stress treatment. These data confirm the potential of abiotic stress for the valorization of residual leaf biomass to enhance the industrial extraction of antioxidant and bioactive flavonoids.


Assuntos
Capsicum , Antioxidantes , Flavonoides , Folhas de Planta , Estresse Salino
8.
Methods Mol Biol ; 2083: 263-277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745928

RESUMO

Mass spectrometry (MS)-based metabolite analysis combined with stable isotope labeling offers a powerful tool to study dynamic regulation of metabolic pathways and metabolite fluxes in biological systems. Here we describe a method to analyze the composition of carotenoid isotopologs in 13C-labeled leaf extracts by using liquid chromatography (LC)-MS and LC-Fourier transform ion cyclotron resonance (FTICR)-MS. High mass resolution of the latter enables unambiguous assignment of observed mass to a unique chemical formula. Based on peak intensity the relative abundance and the degree of 13C labeling are calculated for individual carotenoid isotopologs.


Assuntos
Isótopos de Carbono , Carotenoides/química , Cromatografia Líquida , Marcação por Isótopo , Extratos Vegetais/química , Folhas de Planta/química , Espectrometria de Massas em Tandem , Carotenoides/análise , Pigmentos Biológicos/análise , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação
9.
ACS Omega ; 4(21): 19071-19080, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763530

RESUMO

At the end of the annual horticultural production cycle of greenhouse-grown crops, large quantities of residual biomass are discarded. Here, we propose a new value chain to utilize horticultural leaf biomass for the extraction of secondary metabolites. To increase the secondary metabolite content of leaves, greenhouse-grown crop plants were exposed to low-cost abiotic stress treatments after the last fruit harvest. As proof of concept, we evaluated the production of the flavonoid rutin in tomato plants subjected to nitrogen deficiency. In an interdisciplinary approach, we observed the steady accumulation of rutin in young plants under nitrogen deficiency, tested the applicability of nitrogen deficiency in a commercial-like greenhouse, developed a high efficiency extraction for rutin, and evaluated the acceptance of the proposed value chain by its key actors economically. On the basis of the positive interdisciplinary evaluation, we identified opportunities and challenges for the successful establishment of horticultural leaf biomass as a novel source for secondary metabolites.

10.
Methods Mol Biol ; 2030: 403-414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347134

RESUMO

In this chapter we describe a method for quantification of 20 proteinogenic amino acids by liquid chromatography-mass spectrometry which affords neither derivatization nor the use of organic solvents. Analysis of the underivatized amino acids is performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in the positive ESI mode. Separation is achieved on a strong cation exchange (SCX) column (Luna 5 µ SCX 100 Å) with 5% acetic acid in water (A) and 75 mM ammonium acetate in water (B). Quantification is accomplished by use of d2-phenylalanine as internal standard achieving limits of detection of 5-50 nM. The method was successfully applied for the determination of proteinogenic amino acids in plant extracts.


Assuntos
Aminoácidos/análise , Extratos Vegetais/agonistas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Aminoácidos/química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas em Tandem/instrumentação
11.
New Phytol ; 217(4): 1681-1695, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314018

RESUMO

The biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ-specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation at the tissue- and cell type-specific levels. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser-capture microdissection was performed to gain a cell type-specific transcriptome of U. maydis during tumour formation. In vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type-specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified as the first cell type-specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leaf cell types and of See1 as an effector for induction of proliferation of bundle sheath cells are major steps in understanding U. maydis-induced tumour formation. Moreover, the cell type-specific U. maydis transcriptome data are a valuable resource to the scientific community.


Assuntos
Folhas de Planta/microbiologia , Tumores de Planta/microbiologia , Ustilago/fisiologia , Zea mays/microbiologia , Diferenciação Celular , Divisão Celular , Proliferação de Células , Forma Celular , Parede Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , DNA/biossíntese , Endorreduplicação , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Zea mays/genética , Zea mays/ultraestrutura
12.
Bioresour Technol ; 244(Pt 1): 889-896, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847077

RESUMO

A successful biorefinery needs to align suitable pretreatment with sustainable production of biomasses. Herein, four perennial plants, (Sida, Silphium, Miscanthus and Szarvasi) regarded as promising feedstocks for biorefineries were subjected to the OrganoCat pretreatment. The technology was successfully applied to the different perennial plants revealing that pretreatment of grasses was more efficient than of non-grasses. Thorough analyses of the lignocellulose - before and after fractionation - enabled a detailed description of the fate of cellulosic, non-cellulosic polysaccharides and lignin during the pretreatment. Especially Szarvasi pulp displayed outstanding results in terms of fractionation efficiency and enzymatic digestibility, though in all cases successful lignocellulose fractionation was observed. These insights into the structural composition of different perennial plant species and the impact of the OrganoCat pretreatment on the plant material leads to useful information to strategically adapt such processes to the individual lignocellulosic material aiming for a full valorisation.


Assuntos
Biomassa , Lignina , Fracionamento Químico , Poaceae , Polissacarídeos
13.
J Exp Bot ; 68(9): 2149-2162, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28383668

RESUMO

Nitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an additional oxidative pathway, involving arginine. From an initial screen of potential Arabidopsis thaliana mutants impaired in NO production, we identified copper amine oxidase 8 (CuAO8). Two cuao8 mutant lines displayed a decreased NO production in seedlings after elicitor treatment and salt stress. The NR-dependent pathway was not responsible for the impaired NO production as no change in NR activity was found in the mutants. However, total arginase activity was strongly increased in cuao8 knockout mutants after salt stress. Moreover, NO production could be restored in the mutants by arginase inhibition or arginine addition. Furthermore, arginine supplementation reversed the root growth phenotype observed in the mutants. These results demonstrate that CuAO8 participates in NO production by influencing arginine availability through the modulation of arginase activity. The influence of CuAO8 on arginine-dependent NO synthesis suggests a new regulatory pathway for NO production in plants.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Arabidopsis/fisiologia , Arginina/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Tolerância ao Sal , Arabidopsis/genética , Ácidos Isonicotínicos/metabolismo
14.
Chemosphere ; 131: 34-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25765261

RESUMO

In this study, we demonstrate a fast and efficient workflow to investigate the transformation mechanism of organic chemicals and evaluate the toxicity of their transformation products (TPs) in laboratory scale. The transformation process of organic chemicals was first simulated by electrochemistry coupled online to mass spectrometry (EC-MS). The simulated reactions were scaled up in a batch EC reactor to receive larger amounts of a reaction mixture. The mixture sample was purified and concentrated by solid phase extraction (SPE) for the further ecotoxicological testing. The combined toxicity of the reaction mixture was evaluated in fish egg test (FET) (Danio rerio) compared to the parent compound. The workflow was verified with carbamazepine (CBZ). By using EC-MS seven primary TPs of CBZ were identified; the degradation mechanism was elucidated and confirmed by comparison to literature. The reaction mixture and one primary product (acridine) showed higher ecotoxicity in fish egg assay with 96 h EC50 values of 1.6 and 1.0 mg L(-1) than CBZ with the value of 60.8 mg L(-1). The results highlight the importance of transformation mechanism study and toxicological effect evaluation for organic chemicals brought into the environment since transformation of them may increase the toxicity. The developed process contributes a fast and efficient laboratory method for the risk assessment of organic chemicals and their TPs.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais , Compostos Orgânicos , Fluxo de Trabalho , Animais , Carbamazepina/química , Carbamazepina/toxicidade , Ecotoxicologia , Técnicas Eletroquímicas , Embrião não Mamífero/efeitos dos fármacos , Monitoramento Ambiental/instrumentação , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Desenho de Equipamento , Modelos Teóricos , Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Oxirredução , Medição de Risco/métodos , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-Zebra/crescimento & desenvolvimento
15.
Planta ; 241(4): 917-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25528149

RESUMO

MAIN CONCLUSION: In Nicotiana attenuata seedlings, simulated herbivo ry by the specialist Manduca sexta decreases root growth and partitioning of recent photoassimilates to roots in contrast to increased partitioning reported for older plants. Root elongation rate in Nicotiana attenuata has been shown to decrease after leaf herbivory, despite reports of an increased proportion of recently mobilized photoassimilate being delivered towards the root system in many species after similar treatments. To study this apparent contradiction, we measured the distribution of recent photoassimilate within root tissues after wounding or simulated herbivory of N. attenuata leaves. We found no contradiction: herbivory reduced carbon delivery to root tips. However, the speed of phloem transport in both shoot and root, and the delivery of recently assimilated carbon to the entire root system, declined after wounding or simulated herbivory, in contrast with the often-reported increase in root partitioning. We conclude that the herbivory response in N. attenuata seedlings is to favor the shoot and not bunker carbon in the root system.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Manduca/fisiologia , Nicotiana/fisiologia , Raízes de Plantas/fisiologia , Animais , Transporte Biológico , Radioisótopos de Carbono/análise , Herbivoria , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Nicotiana/crescimento & desenvolvimento
16.
Chemosphere ; 95: 470-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24210597

RESUMO

Veterinary antibiotics administered to livestock can be unintentionally released into the environment, for example by the application of manure to soils. The fate of such antibiotics in soils is mostly determined by sorption and degradation processes, including transformation. There is a need to further examine the combined transformation and sorption behavior of these emerging pollutants in soils. Long-term batch sorption experiments with the (14)C-radiolabeled antibiotic sulfadiazine enabled us to simultaneously trace the sorption and transformation dynamics of sulfadiazine. The parent compound and the transformation products were analyzed in the liquid phase and in the extracts from the solid phase after a sequential extraction. We found that of up to six transformation products were formed during degradation and that these products exhibited quite different dynamics in the two soils. Transformation products were formed rapidly and were extractable from the solid phase. We observed identical sets of the transformation products in both phases. The input concentration influenced the course of transformation of the parent substance. We present a detailed analysis including a mathematical description and derive regulatory kinetic endpoints for predicting environmental concentrations.


Assuntos
Antibacterianos/análise , Modelos Químicos , Poluentes do Solo/análise , Solo/química , Sulfadiazina/análise , Drogas Veterinárias/análise , Adsorção , Cinética
17.
Appl Environ Microbiol ; 79(8): 2572-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396336

RESUMO

Sulfadiazine (SDZ)-degrading bacterial cultures were enriched from the topsoil layer of lysimeters that were formerly treated with manure from pigs medicated with (14)C-labeled SDZ. The loss of about 35% of the applied radioactivity after an incubation period of 3 years was attributed to CO2 release due to mineralization processes in the lysimeters. Microcosm experiments with moist soil and soil slurries originating from these lysimeters confirmed the presumed mineralization potential, and an SDZ-degrading bacterium was isolated. It was identified as Microbacterium lacus, denoted strain SDZm4. During degradation studies with M. lacus strain SDZm4 using pyrimidine-ring labeled SDZ, SDZ disappeared completely but no (14)CO2 was released during 10 days of incubation. The entire applied radioactivity (AR) remained in solution and could be assigned to 2-aminopyrimidine. In contrast, for parallel incubations but with phenyl ring-labeled SDZ, 56% of the AR was released as (14)CO2, 16% was linked to biomass, and 21% remained as dissolved, not yet identified (14)C. Thus, it was shown that M. lacus extensively mineralized and partly assimilated the phenyl moiety of the SDZ molecule while forming equimolar amounts of 2-aminopyrimidine. This partial degradation might be an important step in the complete mineralization of SDZ by soil microorganisms.


Assuntos
Mycobacterium/metabolismo , Sulfadiazina/metabolismo , Animais , Técnicas de Tipagem Bacteriana , Radioisótopos de Carbono , Esterco/microbiologia , Dados de Sequência Molecular , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Pirimidinas , Microbiologia do Solo , Sulfadiazina/química , Sulfadiazina/uso terapêutico , Suínos
18.
J Plant Physiol ; 169(17): 1680-9, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22884406

RESUMO

Fast recovery after de-submergence requires efficient protection against oxidative injuries. We investigated whether de-submergence responses of antioxidant systems differ in two wetland plants, Alternanthera philoxeroides and Hemarthria altissima, characterized by 'escape' and 'quiescence' strategies of flood tolerance, respectively. The antioxidant capacity was assessed in the two species during 10d of recovery following 20d of complete submergence (low light+low O(2)) or severe shading (low light+ambient O(2)). The activities of superoxide dismutase and catalase were measured in leaf and root tissues, along with the concentrations of reduced ascorbate, malondialdehyde, and acetaldehyde. In addition, formation of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) was detected in leaves by chemical staining. Following de-submergence, plants of A. philoxeroides showed a transient burst of acetaldehyde, while the concentration of acetaldehyde increased slowly and stayed high in leaves of H. altissima. In leaves of A. philoxeroides, the variations in O(2)(-) and H(2)O(2) correlated with the levels of light and O(2), respectively, whereas neither of the two reactive oxygen species was detected in H. altissima. For A. philoxeroides, the antioxidant capacities changed mainly in leaves during the recovery. For H. altissima, changes in reduced ascorbate were found in leaves and those of antioxidant enzyme activities in roots. De-submergence caused some lipid peroxidation in leaves of both species. We conclude that de-submergence responses of the detoxification systems differ between A. philoxeroides and H. altissima, especially in leaves. Dynamic changes were found in A. philoxeroides (having the escape strategy), as opposed to little or slow changes in H. altissima (having the quiescence strategy). Whereas the antioxidant capacities are often strongly influenced by light environments, the toxic compounds and lipid peroxidation indicate harmful effects of changing O(2) concentration which accompanies submergence and de-submergence.


Assuntos
Amaranthaceae/metabolismo , Antioxidantes/metabolismo , Fotossíntese , Poaceae/metabolismo , Acetaldeído/metabolismo , Amaranthaceae/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Cromatografia Gasosa , Inundações , Peroxidação de Lipídeos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Áreas Alagadas
19.
Environ Toxicol Chem ; 31(9): 1941-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22782855

RESUMO

Soil drying and rewetting may alter the release and availability of aged pesticide residues in soils. A laboratory experiment was conducted to evaluate the influence of soil drying and wetting on the release of pesticide residues. Soil containing environmentally long-term aged (9-17 years) (14) C-labeled residues of the herbicides ethidimuron (ETD) and methabenzthiazuron (MBT) and the fungicide anilazine (ANI) showed a significantly higher release of (14) C activity in water extracts of previously dried soil compared to constantly moistened soil throughout all samples (ETD: p < 0.1, MBT and ANI: p < 0.01). The extracted (14) C activity accounted for 44% (ETD), 15% (MBT), and 20% (ANI) of total residual (14) C activity in the samples after 20 successive dry-wet cycles, in contrast to 15% (ETD), 5% (MBT), and 6% (ANI) in extracts of constantly moistened soils. In the dry-wet soils, the dissolved organic carbon (DOC) content correlated with the measured (14) C activity in the aqueous liquids and indicated a potential association of DOC with the pesticide molecules. Liquid chromatography MS/MS analyses of the water extracts of dry-wet soils revealed ETD and MBT in detectable amounts, accounting for 1.83 and 0.01%, respectively, of total applied water-extractable parent compound per soil layer. These findings demonstrate a potential remobilization of environmentally aged pesticide residue fractions from soils due to abiotic stresses such as wet-dry cycles.


Assuntos
Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Solo/química , Adulto , Benzotiazóis/análise , Cromatografia Líquida , Fungicidas Industriais/análise , Herbicidas/análise , Humanos , Compostos de Metilureia/análise , Triazinas/análise , Água
20.
Environ Pollut ; 168: 29-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22591787

RESUMO

The fate of the 14C-labeled herbicides ethidimuron (ETD), methabenzthiazuron (MBT), and the fungicide anilazine (ANI) in soils was evaluated after long-term aging (9-17 years) in field based lysimeters subject to crop rotation. Analysis of residual 14C activity in the soils revealed 19% (ETD soil; 0-10 cm depth), 35% (MBT soil; 0-30), and 43% (ANI soil; 0-30) of the total initially applied. Accelerated solvent extraction yielded 90% (ETD soil), 26% (MBT soil), and 41% (ANI soil) of residual pesticide 14C activity in the samples. LC-MS/MS analysis revealed the parent compounds ETD and MBT, accounting for 3% and 2% of applied active ingredient in the soil layer, as well as dihydroxy-anilazine as the primary ANI metabolite. The results for ETD and MBT were matching with values obtained from samples of a 12 year old field plot experiment. The data demonstrate the long-term persistence of these pesticides in soils based on outdoor trials.


Assuntos
Fungicidas Industriais/análise , Herbicidas/análise , Poluentes do Solo/análise , Solo/química , Benzotiazóis/análise , Radioisótopos de Carbono , Monitoramento Ambiental , Compostos de Metilureia/análise , Modelos Químicos , Triazinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA