RESUMO
Compatibility between the rubber material of radial shaft seals and the lubricants to be sealed is an important requirement that customers demand of their lubricant suppliers. Among other effects that may result from incompatibility, the penetration of lubricant components into the rubber (swelling) can impair the seal's functionality due to changes in its geometry and mechanical behavior. Typically, the penetration of a lubricant into an elastomer is evaluated after an immersion test using volumetric, gravimetric, and extraction measurements. Due to the small changes that need to be detected, such methods may not be sufficient to obtain meaningful results. In this contribution, we use magnetic resonance imaging (MRI) to investigate swelling on special tribometer samples as well as a radial shaft seal that were previously used in component tests. Several combinations of rubbers and lubricants that have proven to be compatible were tested in addition to combinations with expected incompatibilities in real applications. The results indicate that MRI measurements can be used to quantify the penetration depth and potentially also the velocity with which the lubricant diffuses into the rubber, thereby yielding detailed insights into the swelling process of the seal.