Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28670573

RESUMO

In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.


Assuntos
Bactérias/classificação , Eucariotos/classificação , Hyaenidae/microbiologia , Hyaenidae/parasitologia , Intestinos/microbiologia , Intestinos/parasitologia , Fatores Etários , Animais , Animais Selvagens/microbiologia , Animais Selvagens/parasitologia , Bactérias/genética , Biodiversidade , Ecossistema , Eucariotos/genética , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Hyaenidae/fisiologia , Oocistos , Contagem de Ovos de Parasitas/classificação , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
2.
Mol Ecol ; 26(7): 2111-2130, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27928865

RESUMO

Was the 1993/1994 fatal canine distemper virus (CDV) epidemic in lions and spotted hyaenas in the Serengeti ecosystem caused by the recent spillover of a virulent domestic dog strain or one well adapted to these noncanids? We examine this question using sequence data from 13 'Serengeti' strains including five complete genomes obtained between 1993 and 2011. Phylogenetic and haplotype network analyses reveal that strains from noncanids during the epidemic were more closely related to each other than to those from domestic or wild canids. All noncanid 'Serengeti' strains during the epidemic encoded: (1) one novel substitution G134S in the CDV-V protein; and (2) the rare amino acid combination 519I/549H at two sites under positive selection in the region of the CDV-H protein that binds to SLAM (CD 150) host cell receptors. Worldwide, only a few noncanid strains in the America II lineage encode CDV-H 519I/549H. All canid 'Serengeti' strains during the epidemic coded CDV-V 134G, and CDV-H 519R/549Y, or 519R/549H. A functional assay of cell entry revealed the highest performance by CDV-H proteins encoding 519I/549H in cells expressing lion SLAM receptors, and the highest performance by proteins encoding 519R/549Y, typical of dog strains worldwide, in cells expressing dog SLAM receptors. Our findings are consistent with an epidemic in lions and hyaenas caused by CDV variants better adapted to noncanids than canids, but not with the recent spillover of a dog strain. Our study reveals a greater complexity of CDV molecular epidemiology in multihost environments than previously thought.


Assuntos
Canidae/virologia , Vírus da Cinomose Canina/genética , Evolução Molecular , Filogenia , Adaptação Biológica/genética , Sequência de Aminoácidos , Animais , Animais Selvagens/virologia , Cinomose/epidemiologia , Ecossistema , Haplótipos , Especificidade de Hospedeiro , Hyaenidae/virologia , Leões/virologia , Modelos Genéticos , Epidemiologia Molecular , RNA Viral/genética , Seleção Genética , Análise de Sequência de RNA , Tanzânia
3.
J Anim Ecol ; 81(1): 36-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21631499

RESUMO

1. The long-term ecological impact of pathogens on group-living, large mammal populations is largely unknown. We evaluated the impact of a pathogenic bacterium, Streptococcus equi ruminatorum, and other key ecological factors on the dynamics of the spotted hyena Crocuta crocuta population in the Ngorongoro Crater, Tanzania. 2. We compared key demographic parameters during two years when external signs of bacterial infection were prevalent ('outbreak') and periods of five years before and after the outbreak when such signs were absent or rare. We also tested for density dependence and calculated the basic reproductive rate R(0) of the bacterium. 3. During the five pre-outbreak years, the mean annual hyena mortality rate was 0.088, and annual population growth was relatively high (13.6%). During the outbreak, mortality increased by 78% to a rate of 0.156, resulting in an annual population decline of 4.3%. After the outbreak, population size increased moderately (5.1%) during the first three post-outbreak years before resuming a growth similar to pre-outbreak levels (13.9%). We found no evidence that these demographic changes were driven by density dependence or other ecological factors. 4. Most hyenas showed signs of infection when prey abundance in their territory was low. During the outbreak, mortality increased among adult males and yearlings, but not among adult females - the socially dominant group members. These results suggest that infection and mortality were modulated by factors linked to low social status and poor nutrition. During the outbreak, we estimated R(0) for the bacterium to be 2.7, indicating relatively fast transmission. 5. Our results suggest that the short-term 'top-down' impact of S. equi ruminatorum during the outbreak was driven by 'bottom-up' effects on nutritionally disadvantaged age-sex classes, whereas the longer-term post-outbreak reduction in population growth was caused by poor survival of juveniles during the outbreak and subsequent poor recruitment of breeding females. These results suggest synergistic effects of 'bottom-up' and 'top-down' processes on host population dynamics.


Assuntos
Surtos de Doenças/veterinária , Hyaenidae/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus equi/fisiologia , Animais , Demografia , Feminino , Hyaenidae/fisiologia , Masculino , Estado Nutricional , Densidade Demográfica , Dinâmica Populacional , Predomínio Social , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/transmissão , Tanzânia/epidemiologia
4.
Nat Commun ; 1: 60, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20975715

RESUMO

Life history theory predicts that mothers should provide their offspring with a privileged upbringing if this enhances their offspring's and their own fitness. In many mammals, high-ranking mothers provide their offspring with a privileged upbringing. Whether dispersing sons gain fitness benefits during adulthood from such privileges (a 'silver spoon' effect) has rarely been examined. In this paper, we show that in the complex, female-dominated society of spotted hyaenas, high-born sons grew at higher rates, were more likely to disperse to clans offering the best fitness prospects, started reproducing earlier and had a higher reproductive value than did lower-born sons. This illustrates the evolutionary importance of maternal effects even in societies in which male size or fighting ability does not influence fitness. By demonstrating for the first time in a non-human mammal that maternal status influences immigration patterns, the study also advances our understanding of two key ecological and evolutionary processes, dispersal and habitat selection.


Assuntos
Hyaenidae/fisiologia , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Ecologia , Feminino , Masculino , Mães
5.
J Wildl Dis ; 44(1): 45-52, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18263820

RESUMO

Health monitoring of spotted hyenas (Crocuta crocuta) in the Serengeti ecosystem, Tanzania, revealed Hepatozoon infection in all of 11 immature individuals examined following death from natural causes. Hepatozoon infection was probably an important factor contributing to mortality in two cases that exhibited clinical signs of ataxia, lethargy, ocular discharge, retching, and labored breathing before death. Whether Hepatozoon infection contributed to six deaths from fire, probable lion predation and unknown causes could not be determined. Four deaths from infanticide and starvation were unlikely to be associated with Hepatozoon infection. Histologic examination revealed lung tissue infected with cyst-like structures containing protozoan stages in all eight cases examined and interstitial pneumonia in most cases. Systemic spread of infection to several organs was found in three cases. Alignment of a 426 bp sequence from the parasite's 18s rRNA gene revealed a Hepatozoon species identical to that recently described from two domestic cats in Spain and only 7 bp substitutions when a 853 bp sequence was aligned to this cat Hepatozoon species. Previous reports of infection of wild carnivores in eastern and southern Africa with an unspecified Hepatozoon species similar in appearance to H. canis may have involved the species described in this study.


Assuntos
Coccidiose/veterinária , Ecossistema , Eucoccidiida , Hyaenidae/parasitologia , Animais , Animais Selvagens/parasitologia , Sequência de Bases , Causas de Morte , Análise por Conglomerados , Coccidiose/epidemiologia , Coccidiose/parasitologia , DNA de Protozoário/química , DNA de Protozoário/genética , Eucoccidiida/classificação , Eucoccidiida/isolamento & purificação , Fezes/parasitologia , Feminino , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Especificidade da Espécie , Tanzânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA