Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 191: 391-406, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27440374

RESUMO

Imogolites are natural aluminosilicate nanotubes that have a diameter of a few nanometers and can be several microns long. These nanotubes have different chemical groups on their internal (Si-OH) and external (Al-OH-Al) surfaces, that can be easily functionalised independently on both surfaces. Here we show that taking advantage of the particular shape and chemistry of imogolite, it is possible to prepare inside/out Janus nanotubes. Two kinds of symmetric Janus nanotubes are prepared: one with an external hydrophilic surface and an internal hydrophobic cavity (imo-CH3) and one with an external hydrophobic surface and a hydrophilic internal cavity (OPA-imo). The behaviour of such inside/out Janus nanotubes at oil/water interfaces is studied. The OPA-imo adsorbs strongly at the oil/water interface and is very efficient in stabilising water-in-oil emulsions through an arrested coalescence mechanism. Imo-CH3 also adsorbs at the oil/water interface. It stabilises oil-in-water emulsions by inducing slow oil-triggered modifications of the viscosity of the continuous phase. The possible transport of small molecules inside the imo-CH3 nanotubes is evidenced, opening up routes towards self-assembled nanofluidics.

2.
Phys Chem Chem Phys ; 13(32): 14516-22, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21750786

RESUMO

The synthesis protocol for Ge-imogolite (aluminogermanate nanotubes) consists of 3 main steps: base hydrolysis of a solution of aluminum and germanium monomers, stabilization of the suspension and heating at 95 °C. The successful synthesis of these nanotubes was found to be sensitive to the hydrolysis step. The impact of the hydrolysis ratio (from n(OH)/n(Al) = 0.5 to 3) on the final product structure was examined using a combination of characterization tools. Thus, key hydrolysis ratios were identified: n(OH)/n(Al) = 1.5 for the formation of nanotubes with structural defects, n(OH)/n(Al) = 2 for the synthesis of a well crystallized Ge imogolite and n(OH)/n(Al) > 2.5 where nanotube formation is hindered. The capability of controlling the degree of the nanotube's crystallinity opens up interesting opportunities in regard to new potential applications.

3.
Langmuir ; 22(8): 3798-806, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584258

RESUMO

Porous composite powders, prepared by spray drying of silica and polybromostyrene nanoparticles, were calcined at various temperatures up to 750 degrees C. The structure in these powders are quantitatively investigated by ultra small-angle X-ray scattering, thermogravimetric analysis, and nuclear magnetic resonance measurements. It has been found that the polybromostyrene latex is efficient in templating mesopores. However, polybromostyrene remains almost completely in the interstitial micropores in the grain after the spray-drying process. A post thermal treatment of the powders has been applied from 250 up to 750 degrees C. We found that the hydrocarbon part of the polybromostyrene is decomposed and leaves the micropores at around 350 degrees C. However, it is demonstrated that a significant amount of bromine remains in the interstitial micropores between the silica particles. At around 600 degrees C, the silica nanoparticles start to fuse with each other and a coalescence of the micropores takes place. At still higher temperature, around 750 degrees C, the micropore network totally disappears, and the growth in pore size occurs due to the coalescence of the mesopores with a significant decrease of the total porosity. During this process, the silica network densification is accompanied by a lowering of the specific surface area.

4.
J Colloid Interface Sci ; 291(2): 477-88, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16115642

RESUMO

Nanoporous powders are prepared in a single step by spray-drying mixtures of small inorganic and larger organic nanoparticles. The structure of these powders has been studied as a function of the mixture's composition using silica and polybromostyrene nanoparticles. Scanning electron microscopy reveals the presence of an increasing concentration of mesopores as the concentration of polybromostyrene increases. By coupling thermogravimetric analysis and ultra-small-angle X-ray scattering, the structure is quantitatively linked to the composition of the porous grains. Experimental USAXS intensities are compared to scattering models for the composite powders. It allows to demonstrate that (i) all mesopores are empty even in the center of the grains, (ii) part of the polymer remains in the micropores of the dried grains. A quantification of the fraction of micropores filled by residual polymer is presented. Such a synthesis procedure can be used to produce hydrophobic porous powders in a one-step process.

5.
J Colloid Interface Sci ; 228(2): 379-385, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10926478

RESUMO

A method based on static light scattering by fractal aggregates is introduced to extract structural information. In this study, we determine the scattered intensity by a fractal aggregate calculating the Structure and the Form factors noted, respectively, S(q) and F(q). We use the approximation of the mean field Mie scattering by fractal aggregates (R. Botet, P. Rannou, and M. Cabane, appl. opt. 36, 8791, 1997). This approximation is validated by a comparison of the scattering and extinction cross sections values calculated using, on the one hand, Mie theory with a mean optical index n) and, on the other hand, the mean field approximation. Scattering and extinction cross sections values differ by about 5%. We show that the mean environment of primary scatterers characterized by the optical index n(s) must be taken into account to interpret accurately the scattering pattern from fractal aggregates. Numerical simulations were done to evaluate the influence of the fractal dimension values (D(f)>2) and of the radius of gyration or the number of primary particles within the aggregates (N=50 to 250) on the scatterers' mean optical contrast (n(s)/n). This last parameter plays a major role in determining the Form factor F(q) which corresponds to the primary particles' scattering. In associating the mean optical index (n) to structural characteristics, this work provides a theoretical framework to be used to provide additional structural information from the scattering pattern of a fractal aggregate (cf. Part II). Copyright 2000 Academic Press.

6.
J Colloid Interface Sci ; 228(2): 386-392, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10926479

RESUMO

Information on the size and structure of aggregates is critical in predicting the formation kinetics, settling velocities, and reactivity of particle aggregates. For some systems, however, accessing this information may be very difficult. Light scattering measurements are among the most useful techniques for accessing such information. In the case of large primary particles forming aggregates, the common Rayleigh approximation is not valid. Instead, Mie scattering must be used and multiple scattering must be accounted for. Moreover, size polydispersity and structure of aggregates are combined in the scattered intensity measurements. This work presents an experimental validation of a new theoretical approach for extracting information on both aggregate structure and size when multiple scattering cannot be neglected. The chemically controlled aggregation of 0.8-µm latex particles demonstrates the following: (1) Polydispersity effects prevent the interpretation of data to obtain structural information from the Structure factor S(q). (2) The calculated optical contrast decreasing during the aggregation can be correlated with the structural changes in the growing aggregates independently of size polydispersity. We have shown that a strict correlation can be obtained between the fractal dimension D(f) and the scatterers' mean optical contrast calculated at large scattering angles. (3) The changes in the Form factor (F(q)) due to multiple scattering when particles are close together yield a predicted structure that is in agreement with expected fractal dimension values and therefore S(q) can be described in term of both structure and size polydispersity. Copyright 2000 Academic Press.

7.
J Colloid Interface Sci ; 220(2): 465-467, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10607467

RESUMO

Several assumptions are made when confocal scanning laser microscopy is used for the determination of the fractal dimension of aggregates. The purpose of this study is to experimentally show that one of these assumptions, which concerns the relation existing between the structure of an aggregate and that of its sections, is valid. A comparison between the structures of sections and reconstructed 3D edifices of latex aggregates shows that they are both directly related even in the case of relatively small aggregates. Copyright 1999 Academic Press.

8.
J Colloid Interface Sci ; 204(2): 357-62, 1998 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9698415

RESUMO

The fractal dimension of a particle aggregate can provide fundamental information on the structure and origin of the aggregate. The analysis of large chemically homogeneous fractal objects has been achieved, but reliable methods of estimating the fractal dimensions of large and chemically heterogeneous aggregates are needed. To this end, we used confocal scanning laser microscopy in which thin optical sections of aggregates were obtained in order to calculate their 2D and ultimately 3D fractal dimensions according to the Mandelbrot theory. Fractal dimensions of 2.08 +/- 0.11 for a Brownian aggregation of latex particles and 2.25 +/- 0.12 for shear aggregation were determined using the confocal technique. These values are within the ranges for universality classes predicted for such aggregates and observed by previous investigators. Thus, this method appears to provide reliable estimates of the fractal dimension with particular utility in the characterization of aggregates composed of larger particles or complex materials where the fractal dimension may not be accessible by light-scattering measurements. The confocal method is used to analyze flocs of activated sludge material as one example of the application of this method to more complex, large (up to 500 µm), and chemically heterogeneous flocs. Copyright 1998 Academic Press.

9.
Science ; 210(4476): 1347-9, 1980 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17817846

RESUMO

Benzo[a]pyrene deposited on a glass fiber filter reacts rapidly in the dark or light with ambient levels of ozone to yield a mixture of products that display strong direct mutagenicity in the Ames assay. The major stable contributor to this activity has been identified as benzo[a]pyrene-4,5-oxide, a DNA-binding metabolite in biological systems, known to be a strong direct mutagen with Salmonella typhimurium strain TA98.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA