Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(17): e2200626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435331

RESUMO

Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.


Assuntos
Bussulfano , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Proteína Supressora de Tumor p53 , Animais , Bussulfano/metabolismo , Bussulfano/farmacologia , Homeostase , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Espermatogônias/metabolismo , Proteína Supressora de Tumor p53/genética
3.
Cells ; 10(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572051

RESUMO

Spermatogenesis is a process within the testis that leads to the production of spermatozoa. It is based on a population of spermatogonial stem cells, which have the capacity to self-renew and to differentiate throughout life to ensure the functions of reproduction are maintained. Male fertility disorders are responsible for half of the cases of infertility in couples worldwide. It is well known that cancer treatments are associated with reversible or irreversible fertility disorders. Busulfan (Bu) is an alkylating agent that significantly inhibits spermatogenesis. The present study relied on a combination of in vivo and in vitro approaches as well as RNAseq analysis to characterize the effects of Bu, in which mouse testes were used as a model. An in silico analysis revealed that many of the Bu-modulated genes are potentially regulated by the SIN3 Transcription Regulator Family Member A (SIN3A) and E2F Transcription Factor (E2F) families of transcription factors. The results demonstrate that the deregulated genes function in processes related to the cell cycle, DNA repair, and cell death mechanisms, including the Tumor Protein 53 (TP53) pathway. This reinforces the role of the TP53 signaling pathway as a major player in Bu effects. In addition, Bu altered the patterns of mRNA accumulation for various genes in undifferentiated spermatogonia. This work provides significant insight into the kinetics and impacts of busulfan, which could pave the way for developing strategies to minimize the impact of chemodrugs and, thus, could lead to germ cell lineage regeneration following anticancer treatments.


Assuntos
Bussulfano/farmacologia , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Testículo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Testículo/metabolismo
4.
Mol Cell Endocrinol ; 518: 110995, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827571

RESUMO

The hypothalamic-pituitary axis exert a major control over endocrine and exocrine testicular functions. The hypothalamic-pituitary axis corresponds to a cascade with the Gonadotropin Releasing Hormone secreted by the hypothalamus, which stimulates the synthesis and the release of Luteinizing Hormone (LH) and Follicle Stimulating Hormone by the gonadotropic cells of the anterior pituitary. The LH signaling pathway controls the steroidogenic activity of the Leydig cells via the activation of the luteinizing hormone/choriogonadotropin receptor. In order to avoid a runaway system, sex steroids exert a negative feedback within hypothalamus and pituitary. Testicular steroidogenesis is locally controlled within Leydig cells. The present work reviews some local regulations of steroidogenesis within the Leydig cells focusing mainly on the roles of the Farnesoid-X-Receptor-alpha and its interactions with several orphan members of the nuclear receptor superfamily. Further studies are required to reinforce our knowledge of the regulation of testicular endocrine function, which is necessary to ensure a better understanding of fertility disorders and then proposed an adequate treatment of the diseases.


Assuntos
Hormônios Gonadais/metabolismo , Células Intersticiais do Testículo/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Células Endócrinas/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Hipófise/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia
5.
J Steroid Biochem Mol Biol ; 194: 105460, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31470110

RESUMO

The bile acid receptor Farnesoid-X-Receptor alpha (FXRα), a member of the nuclear receptor superfamily, is well known for its roles in the enterohepatic tract. In addition, FXRα regulates testicular physiology through the control of both endocrine and exocrine functions. The endocrine function of the Leydig cells is mainly controlled by the hypothalamo-pituitary axis viaLH/chorionic gonadotropin (CG). If FXRα was demonstrated to control the expression of the Lhcgr gene, encoding the LH receptor; the impact of the LH/CG signaling on the Fxrα expression has not been defined so far. Here, we demonstrate that hCG increases the Fxrα gene expression through the protein kinase-A signaling pathway. Fxrα is then involved in a negative feedback of steroid synthesis. These data improve our knowledge of the local control of the testicular steroidogenesis with the identification of the link between the hypothalamo-pituitary axis and the FXRα signaling pathway.


Assuntos
Gonadotropina Coriônica/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Testículo/efeitos dos fármacos , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Progesterona/metabolismo , Receptores do LH/genética , Transdução de Sinais/efeitos dos fármacos , Testículo/metabolismo , Testosterona/sangue , Testosterona/metabolismo
6.
Cell Mol Life Sci ; 76(24): 4849-4859, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31407019

RESUMO

The farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies. Here, we will review the unexpected roles of FXRα on the male reproductive tract. FXRα has been demonstrated to play functions in the regulation of testicular and prostate homeostasis. Even though additional studies are needed to confirm these findings in humans, the reviewed reports open new field of research to better define the effects of bile acid-FXRα signaling pathways on fertility disorders and cancers.


Assuntos
Genitália Masculina/crescimento & desenvolvimento , Próstata/crescimento & desenvolvimento , Receptores Citoplasmáticos e Nucleares/genética , Testículo/crescimento & desenvolvimento , Animais , Ácidos e Sais Biliares/metabolismo , Genitália Masculina/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Próstata/metabolismo , Transdução de Sinais/genética , Testículo/metabolismo , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 19(11)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453651

RESUMO

Structural and functional studies have provided numerous insights over the past years on how members of the nuclear hormone receptor superfamily tightly regulate the expression of drug-metabolizing enzymes and transporters. Besides the role of the farnesoid X receptor (FXR) in the transcriptional control of bile acid transport and metabolism, this review provides an overview on how this metabolic sensor prevents the accumulation of toxic byproducts derived from endogenous metabolites, as well as of exogenous chemicals, in coordination with the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Decrypting this network should provide cues to better understand how these metabolic nuclear receptors participate in physiologic and pathologic processes with potential validation as therapeutic targets in human disabilities and cancers.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença , Saúde , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/metabolismo , Animais , Ácidos e Sais Biliares/química , Humanos , Inativação Metabólica
8.
Sci Rep ; 8(1): 16875, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443025

RESUMO

Besides their well-known roles in digestion and fat solubilization, bile acids (BAs) have been described as signaling molecules activating the nuclear receptor Farnesoid-X-receptor (FXRα) or the G-protein-coupled bile acid receptor-1 (GPBAR-1 or TGR5). In previous reports, we showed that BAs decrease male fertility due to abnormalities of the germ cell lineage dependent on Tgr5 signaling pathways. In the presentstudy, we tested whether BA exposure could impact germ cell DNA integrity leading to potential implications for progeny. For that purpose, adult F0 male mice were fed a diet supplemented with cholic acid (CA) or the corresponding control diet during 3.5 months prior mating. F1 progeny from CA exposed founders showed higher perinatal lethality, impaired BA homeostasis and reduced postnatal growth, as well as altered glucose metabolism in later life. The majority of these phenotypic traits were maintained up to the F2 generation. In F0 sperm cells, differential DNA methylation associated with CA exposure may contribute to the initial programming of developmental and metabolic defects observed in F1 and F2 offspring. Tgr5 knock-out mice combined with in vitro strategies defined the critical role of paternal Tgr5 dependent pathways in the multigenerational impacts of ancestral CA exposure.


Assuntos
Bile/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Linhagem da Célula/efeitos dos fármacos , Ácido Cólico/farmacologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , DNA Metiltransferase 3B
9.
Stem Cell Reports ; 11(4): 944-958, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30245210

RESUMO

Several studies have reported an association between the farnesoid X receptor alpha (FXRα) and estrogenic signaling pathways. Fxrα could thus be involved in the reprotoxic effects of endocrine disruptors such as bisphenol-A (BPA). To test this hypothesis, mice were exposed to BPA and/or stigmasterol (S), an FXRα antagonist. Following the exposure to both molecules, wild-type animals showed impaired fertility and lower sperm cell production associated with the alteration of the establishment and maintenance of the undifferentiated germ cell pool. The crosstalk between BPA and FXRα is further supported by the lower impact of BPA in mice genetically ablated for Fxrα and the fact that BPA counteracted the effects of FXRα agonists. These effects might result from the downregulation of Fxrα expression following BPA exposure. BPA and S act additively in human testis. Our data demonstrate that FXRα activity modulates the impact of BPA on male gonads and on undifferentiated germ cell population.


Assuntos
Compostos Benzidrílicos/toxicidade , Diferenciação Celular , Células Germinativas/patologia , Homeostase , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Fenóis/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Adulto , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Feto/efeitos dos fármacos , Feto/patologia , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estigmasterol/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-30072948

RESUMO

Cholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes. Male reproductive function has been demonstrated to be dependent on cholesterol homeostasis. Here we review data highlighting the impacts of cholesterol homeostasis on male fertility and the molecular mechanisms implicated through the signaling pathways of some nuclear receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA