Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766166

RESUMO

Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human ß cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced ß cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of ß cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented ß cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for ß cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.

2.
Diabetologia ; 66(11): 2075-2086, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581620

RESUMO

AIMS/HYPOTHESIS: The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNÉ£) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells. METHODS: Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-ßH1 was monitored using peptide-specific CD8 T cells. RESULTS: We found that IFNγ induces the expression of the PSMB10 transcript encoding the ß2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Our data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes. DATA AVAILABILITY: The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the accession number GSE218316 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218316 ).


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Autoimunidade , Ilhotas Pancreáticas/metabolismo , Interferon-alfa/farmacologia , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo
3.
Mol Metab ; 76: 101772, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442376

RESUMO

OBJECTIVES: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-ßH5 cells, the latest in the EndoC-ßH cell family. METHODS: EndoC-ßH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-ßH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS: Ready to use EndoC-ßH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-ßH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-ßH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS: EndoC-ßH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.


Assuntos
Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Secreção de Insulina , Linhagem Celular , Insulina/metabolismo , Fatores de Transcrição/metabolismo , Glucose/metabolismo
4.
Diabetologia ; 66(5): 884-896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36884057

RESUMO

AIMS/HYPOTHESIS: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1ß release. RESULTS: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).


Assuntos
Insulisina , Ilhotas Pancreáticas , Humanos , Células Secretoras de Somatostatina/metabolismo , Insulisina/metabolismo , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA , Sinais Direcionadores de Proteínas
5.
Front Endocrinol (Lausanne) ; 13: 1058345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518246

RESUMO

Introduction: Enterovirus infection has long been suspected as a possible trigger for type 1 diabetes. Upon infection, viral double-stranded RNA (dsRNA) is recognized by membrane and cytosolic sensors that orchestrate type I interferon signaling and the recruitment of innate immune cells to the pancreatic islets. In this context, adenosine deaminase acting on RNA 1 (ADAR1) editing plays an important role in dampening the immune response by inducing adenosine mispairing, destabilizing the RNA duplexes and thus preventing excessive immune activation. Methods: Using high-throughput RNA sequencing data from human islets and EndoC-ßH1 cells exposed to IFNα or IFNγ/IL1ß, we evaluated the role of ADAR1 in human pancreatic ß cells and determined the impact of the type 1 diabetes pathophysiological environment on ADAR1-dependent RNA editing. Results: We show that both IFNα and IFNγ/IL1ß stimulation promote ADAR1 expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in EndoC-ßH1 cells as well as in primary human islets. Discussion: We demonstrate that ADAR1 overexpression inhibits type I interferon response signaling, while ADAR1 silencing potentiates IFNα effects. In addition, ADAR1 overexpression triggers the generation of alternatively spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the ß cell transcriptome under inflammatory conditions.


Assuntos
Adenosina Desaminase , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Interferon Tipo I , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Inflamação/genética , Células Secretoras de Insulina/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , RNA de Cadeia Dupla , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
6.
Sci Adv ; 8(37): eabn5732, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103539

RESUMO

IFNα is a key regulator of the dialogue between pancreatic ß cells and the immune system in early type 1 diabetes (T1D). IFNα up-regulates HLA class I expression in human ß cells, fostering autoantigen presentation to the immune system. We observed by bulk and single-cell RNA sequencing that exposure of human induced pluripotent-derived islet-like cells to IFNα induces expression of HLA class I and of other genes involved in antigen presentation, including the transcriptional activator NLRC5. We next evaluated the global role of NLRC5 in human insulin-producing EndoC-ßH1 and human islet cells by RNA sequencing and targeted gene/protein determination. NLRC5 regulates expression of HLA class I, antigen presentation-related genes, and chemokines. NLRC5 also mediates the effects of IFNα on alternative splicing, a generator of ß cell neoantigens, suggesting that it is a central player of the effects of IFNα on ß cells that contribute to trigger and amplify autoimmunity in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Processamento Alternativo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Transcrição Gênica
7.
Diabetes ; 70(10): 2299-2312, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34554924

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of the insulin-producing pancreatic ß-cells. Increasing evidence suggest that the ß-cells themselves contribute to their own destruction by generating neoantigens through the production of aberrant or modified proteins that escape central tolerance. We recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human ß-cells, emphasizing the participation of nonconventional translation events in autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human ß-cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from noncanonical start sites and translation initiation within long noncoding RNA. Our data underline the extreme diversity of the ß-cell translatome and may reveal new functional biomarkers for ß-cell distress, disease prediction and progression, and therapeutic intervention in T1D.


Assuntos
Inflamação , Células Secretoras de Insulina/metabolismo , Biossíntese de Proteínas/genética , RNA Longo não Codificante/genética , Autoimunidade/genética , Biomarcadores/análise , Biomarcadores/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/patologia , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Iniciação Traducional da Cadeia Peptídica/genética , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma
8.
Nat Rev Endocrinol ; 17(3): 150-161, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33293704

RESUMO

Type 1 diabetes mellitus is believed to result from destruction of the insulin-producing ß-cells in pancreatic islets that is mediated by autoimmune mechanisms. The classic view is that autoreactive T cells mistakenly destroy healthy ('innocent') ß-cells. We propose an alternative view in which the ß-cell is the key contributor to the disease. By their nature and function, ß-cells are prone to biosynthetic stress with limited measures for self-defence. ß-Cell stress provokes an immune attack that has considerable negative effects on the source of a vital hormone. This view would explain why immunotherapy at best delays progression of type 1 diabetes mellitus and points to opportunities to use therapies that revitalize ß-cells, in combination with immune intervention strategies, to reverse the disease. We present the case that dysfunction occurs in both the immune system and ß-cells, which provokes further dysfunction, and present the evidence leading to the consensus that islet autoimmunity is an essential component in the pathogenesis of type 1 diabetes mellitus. Next, we build the case for the ß-cell as the trigger of an autoimmune response, supported by analogies in cancer and antitumour immunity. Finally, we synthesize a model ('connecting the dots') in which both ß-cell stress and islet autoimmunity can be harnessed as targets for intervention strategies.


Assuntos
Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/imunologia , Animais , Diabetes Mellitus Tipo 1/diagnóstico , Microbioma Gastrointestinal/imunologia , Humanos , Imunoterapia/métodos , Imunoterapia/tendências , Linfócitos T/imunologia
9.
Diabetes ; 69(4): 670-680, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31896552

RESUMO

The signal peptide of preproinsulin is a major source for HLA class I autoantigen epitopes implicated in CD8 T cell (CTL)-mediated ß-cell destruction in type 1 diabetes (T1D). Among them, the 10-mer epitope located at the C-terminal end of the signal peptide was found to be the most prevalent in patients with recent-onset T1D. While the combined action of signal peptide peptidase and endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) is required for processing of the signal peptide, the mechanisms controlling signal peptide trimming and the contribution of the T1D inflammatory milieu on these mechanisms are unknown. Here, we show in human ß-cells that ER stress regulates ERAP1 gene expression at posttranscriptional level via the IRE1α/miR-17-5p axis and demonstrate that inhibition of the IRE1α activity impairs processing of preproinsulin signal peptide antigen and its recognition by specific autoreactive CTLs during inflammation. These results underscore the impact of ER stress in the increased visibility of ß-cells to the immune system and position the IRE1α/miR-17 pathway as a central component in ß-cell destruction processes and as a potential target for the treatment of autoimmune T1D.


Assuntos
Aminopeptidases/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aminopeptidases/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/imunologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Proteínas Serina-Treonina Quinases/genética , Regulação para Cima
10.
Diabetes Obes Metab ; 20 Suppl 2: 88-94, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30230178

RESUMO

ß-cell destruction in type 1 diabetes (T1D) results from the effect of inflammation and autoimmunity. In response to inflammatory signals, islet cells engage adaptive mechanisms to restore and maintain cellular homeostasis. Among these mechanisms, the unfolded protein response (UPR) leads to a reduction of the general protein translation rate, increased production of endoplasmic reticulum chaperones and the initiation of degradation by activation of the ER associated degradation pathway (ERAD) in which newly synthetized proteins are ubiquitinylated and processed through the proteasome. This adaptive phase is also believed to play a critical role in the development of autoimmunity by the generation of neoantigens. While we have previously investigated the effect of stress on transcription, translation and post-translational events as possible source for neoantigens, the participation of the degradation machinery, yet crucial in the generation of antigenic peptides, remains to be investigated in the context of T1D pathology. In this review, we will describe the relation between the unfolded protein response and the Ubiquitin Proteasome System (UPS) and address the role of the cellular degradation machinery in the generation of antigens. Learning from tumour immunology, we propose how these processes may unmask ß-cells by triggering the generation of aberrant peptides recognized by the immune cells.


Assuntos
Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático/fisiologia , Ilhotas Pancreáticas/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/imunologia , Humanos , Insulina/biossíntese , Ilhotas Pancreáticas/imunologia , Complexo de Endopeptidases do Proteassoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA