Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Nat Chem Biol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902458

RESUMO

Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.

2.
Surg Innov ; : 15533506241260087, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831684

RESUMO

Background: Prolonged warm ischemia time (WIT) in kidney transplantation is associated with numerous adverse outcomes including delayed graft function and decreased patient and graft survival. Circumventing WIT lies in maintaining renal hypothermia and efficiently performing the vascular anastomosis during this portion of the procedure. Although numerous methods of intra-operative renal cooling have been proposed, most suffer from practical limitations, and none have been widely adopted. Herein we describe a novel device specifically designed to maintain renal hypothermia during kidney transplant surgery.Methods: Aluminum tubing was organized in a serpentine pattern to create a malleable, form-fitting cooling jacket to manipulate renal allografts during transplant surgery. Adult porcine kidneys were used to test the device with 4°C saline as coolant. Kidneys were placed at 24°C; surface and core temperatures were monitored using implanted thermocouples. Anastomosis of porcine kidney vessels to GORE-TEX® vascular grafts in an ex-vivo operative field was performed to assess the functionality of the device.Results: The device maintained surface and core graft temperatures of ≤5°C after 60 minutes of WIT. Furthermore, the device provided hands-free retraction and support for the allograft. We found that ex-vivo anastomosis testing was enhanced by the presence of the cooling jacket.Conclusions: This proof-of-concept study demonstrated that our novel device is a practical tool for renal transplantation and can maintain sufficiently cool graft temperatures to mitigate WIT in an ex-vivo setting. This device is the first of its kind and has the potential to improve kidney transplant outcomes by eliminating WIT during graft implantation.

3.
J Phys Chem B ; 128(17): 4158-4170, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38655896

RESUMO

The photoionization dynamics of indole, the ultraviolet-B chromophore of tryptophan, were explored in water and ethanol using ultrafast transient absorption spectroscopy with 292, 268, and 200 nm excitation. By studying the femtosecond-to-nanosecond dynamics of indole in two different solvents, a new photophysical model has been generated that explains many previously unsolved facets of indole's complex solution phase photochemistry. Photoionization is only an active pathway for indole in aqueous solution, leading to a reduction in the fluorescence quantum yield in water-rich environments, which is frequently used in biophysical experiments as a key signature of the protein-folded state. Photoionization of indole in aqueous solution was observed for all three pump wavelengths but via two different mechanisms. For 200 nm excitation, electrons are ballistically ejected directly into the bulk solvent. Conversely, 292 and 268 nm excitation populates an admixture of two 1ππ* states, which form a dynamic equilibrium with a tightly bound indole cation and electron-ion pair. The ion pair dissociates on a nanosecond time scale, generating separated solvated electrons and indole cations. The charged species serve as important precursors to triplet indole production and greatly enhance the overall intersystem crossing rate. Our proposed photophysical model for indole in aqueous solution is the most appropriate for describing photoinduced dynamics of tryptophan in polypeptide sequences; tryptophan in aqueous pH 7 solution is zwitterionic, unlike in peptides, and resultantly has a competitive excited state proton transfer pathway that quenches the tryptophan fluorescence.

4.
ACS Appl Mater Interfaces ; 15(38): 44711-44721, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37715711

RESUMO

Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Carbono/química , Espectroscopia Fotoeletrônica , Corantes Fluorescentes/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Phys Chem B ; 127(38): 8199-8207, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37708380

RESUMO

Despite many decades of study, the excited state photophysics of polyenes remains controversial. In diphenylpolyenes with conjugated backbones that contain between 2 and 4 double carbon-carbon bonds, the first two excited electronic states are nearly degenerate but of entirely different character, and their energy splitting is strongly dependent on solvent polarizability. To examine the interplay between these different states, steady-state and time-resolved fluorescence spectroscopies were used to undertake a comprehensive investigation of diphenylocatetraene's (DPO) excited state dynamics in 10 solvents of different polarizabilities and polarities, ranging from weakly interacting alkanes to polar hydrogen-bonding alcohols. These data revealed that photopreparation of the optically bright 1Bu state resulted in fast (<170 ps) internal conversion to the lower-lying optically dark 2Ag state. The 2Ag state is responsible for almost all the observed DPO fluorescence and gains oscillator strength via vibronic intensity stealing with the near-degenerate 1Bu state. The fluorescence lifetime associated with the 2Ag state decayed monoexponentially (4.2-7.2 ns) in contrast to prior biexponential decay kinetics reported for similar polyenes, diphenylbutadiene and diphenylhexatriene. An analysis combining the measured fluorescence lifetimes and fluorescence quantum yields (the latter varying between 7 and 21%) allowed for a 190 cm-1 Herzberg-Teller vibronic coupling constant between the 1Bu and 2Ag states to be determined. The analysis also revealed that the ordering of electronic states remains constant in all the solvents studied, with the 2Ag state minimum always lower in energy than that of the 1Bu state, thus making it a relatively simple polyene compared to structurally similar diphenylhexatriene.

6.
Proc Natl Acad Sci U S A ; 120(31): e2306046120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487099

RESUMO

The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.


Assuntos
Hemeproteínas , Biofísica , Microscopia Crioeletrônica , Elétrons , Oxirredução
7.
Can J Kidney Health Dis ; 10: 20543581231178960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333478

RESUMO

Background: Prolonged warm ischemia time (WIT) and cold ischemia time (CIT) are independently associated with post-transplant graft failure; their combined impact has not been previously studied. We explored the effect of combined WIT/CIT on all-cause graft failure following kidney transplantation. Methods: The Scientific Registry of Transplant Recipients was used to identify kidney transplant recipients from January 2000 to March 2015 (after which WIT was no longer separately reported), and patients were followed until September 2017. A combined WIT/CIT variable (excluding extreme values) was separately derived for live and deceased donor recipients using cubic splines; for live donor recipients, the reference group was WIT 10 to <23 minutes and CIT >0 to <0.42 hours, and for deceased donor recipients the WIT was 10 to <25 minutes and CIT 1 to <7.75 hours. The adjusted association between combined WIT/CIT and all-cause graft failure (including death) was analyzed using Cox regression. Secondary outcomes included delayed graft function (DGF). Results: A total of 137 125 recipients were included. For live donor recipients, patients with prolonged WIT/CIT (60 to ≤120 minutes/3.04 to ≤24 hours) had the highest adjusted hazard ratio (HR) for graft failure (HR = 1.61, 95% confidence interval [CI] = 1.14-2.29 relative to the reference group). For deceased donor recipients, a WIT/CIT of 63 to ≤120 minutes/28 to ≤48 hours was associated with an adjusted HR of 1.35 (95% CI = 1.16-1.58). Prolonged WIT/CIT was also associated with DGF for both groups although the impact was more driven by CIT. Conclusions: Combined WIT/CIT is associated with graft loss following transplantation. Acknowledging that these are separate variables with different determinants, we emphasize the importance of capturing WIT and CIT independently. Furthermore, efforts to reduce WIT and CIT should be prioritized.


Contexte: La période prolongée d'ischémie à chaud (WIT­warm ischemia time) et la période prolongée d'ischémie à froid (CIT­cold ischemia time) ont été associées de façon indépendante à une défaillance du greffon post-transplantation, mais leur effet combiné n'a jamais été étudié. Nous avons examiné l'effet combiné WIT/CIT sur la défaillance du greffon toutes causes confondues après une transplantation rénale. Méthodologie: Le Scientific Registry of Transplant Recipients a été utilisé pour identifier les receveurs d'une greffe de rein entre janvier 2000 et mars 2015 (date après laquelle la WIT n'a plus été rapportée séparément). Les patients ont été suivis jusqu'en septembre 2017. Une variable combinée WIT/CIT (excluant les valeurs extrêmes) a été dérivée de façon isolée pour les donneurs vivants et les donneurs décédés à l'aide d'une fonction spline cubique. La WIT du groupe référence pour les donneurs vivants se situait entre 10 et <23 minutes, et la CIT entre 0 et <0,42 heure; pour les donneurs décédés, la WIT se situait entre 10 et <25 minutes, et la CIT entre 1 et <7,75 heures. L'association corrigée entre une combinaison WIT/CIT et la défaillance du greffon toutes causes confondues (y compris le décès) a été analysée à l'aide de la régression de Cox. Les résultats secondaires incluaient une reprise retardée de la fonction du greffon (RRFG). Résultats: Un total de 137 125 receveurs d'un rein a été inclus. Dans le groupe des receveurs d'un organe provenant d'un donneur vivant, les patients avec une WIT/CIT prolongée (60 à ≤120 minutes/3,04 à ≤24 heures) présentaient un risque relatif corrigé plus élevé de défaillance du greffon (RRc: 1,61; IC 95 %: 1,14-2,29) par rapport au groupe de référence. Dans le groupe des receveurs d'un organe provenant d'un donneur décédé, une combinaison WIT/CIT de 63 à ≤120 minutes/28 à ≤48 heures a été associée à un RRc de 1,35 (IC 95 %: 1,16-1,58). La WIT/CIT prolongée a également été associée à une RRFG pour les deux groupes, bien que cet effet ait été davantage influencé par la CIT. Conclusion: La combinaison WIT/CIT est associée à la perte du greffon après la transplantation. Sachant qu'il s'agit de variables distinctes avec des déterminants différents, nous soulignons l'importance de rapporter la WIT et la CIT de façon indépendante. Qui plus est, les efforts visant à réduire la WIT et la CIT devraient être prioritaires.

8.
Ecol Evol ; 13(4): e9905, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038530

RESUMO

Quantifying habitat quality is dependent on measuring a site's relative contribution to population growth rate. This is challenging for studies of waterbirds, whose high mobility can decouple demographic rates from local habitat conditions and make sustained monitoring of individuals near-impossible. To overcome these challenges, biologists have used many direct and indirect proxies of waterbird habitat quality. However, consensus on what methods are most appropriate for a given scenario is lacking. We undertook a structured literature review of the methods used to quantify waterbird habitat quality, and provide a synthesis of the context-dependent strengths and limitations of those methods. Our search of the Web of Science and Scopus databases returned a sample of 666 studies, upon which our review was based. The reviewed studies assessed habitat quality by either measuring habitat attributes (e.g., food abundance, water quality, vegetation structure), or measuring attributes of the waterbirds themselves (e.g., demographic parameters, body condition, behavior, distribution). Measuring habitat attributes, although they are only indirectly related to demographic rates, has the advantage of being unaffected by waterbird behavioral stochasticity. Conversely, waterbird-derived measures (e.g., body condition, peck rates) may be more directly related to demographic rates than habitat variables, but may be subject to greater stochastic variation (e.g., behavioral change due to presence of conspecifics). Therefore, caution is needed to ensure that the measured variable does influence waterbird demographic rates. This assumption was usually based on ecological theory rather than empirical evidence. Our review highlighted that there is no single best, universally applicable method to quantify waterbird habitat quality. Individual project specifics (e.g., time frame, spatial scale, funding) will influence the choice of variables measured. Where possible, practitioners should measure variables most directly related to demographic rates. Generally, measuring multiple variables yields a better chance of accurately capturing the relationship between habitat characteristics and demographic rates.

9.
Trends Ecol Evol ; 38(8): 727-735, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105850

RESUMO

A global technology arms race is underway to build evermore powerful and precise quantum computers. Quantum computers have the potential to tackle certain quantitative problems quicker than classical computers. The current focus of quantum computing is on pushing the boundaries of fundamental quantum information and commercial applications in industrial sectors, financial services, and other profit-led sectors, particularly where improvements in optimisation and sampling can improve increased economic return. We believe that ecologists could exploit the computational power of quantum computers because the statistical approaches commonly used in ecology already have proven pathways on quantum computers. Moreover, quantum computing could ultimately leapfrog our understanding of complex ecological systems, if the hardware, opportunity, and creativity of quantitative ecologists all align.


Assuntos
Metodologias Computacionais , Teoria Quântica , Computadores , Ecologia
10.
Mol Ecol ; 32(23): 6696-6709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36799015

RESUMO

The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.


Assuntos
DNA Ambiental , Ecossistema , DNA Ambiental/genética , Navios , Biodiversidade , Água , Monitoramento Ambiental , Código de Barras de DNA Taxonômico
11.
Proc Natl Acad Sci U S A ; 119(46): e2213308119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36346842

RESUMO

Invasive rodents are a major cause of environmental damage and biodiversity loss, particularly on islands. Unlike insects, genetic biocontrol strategies including population-suppressing gene drives with biased inheritance have not been developed in mice. Here, we demonstrate a gene drive strategy (tCRISPR) that leverages super-Mendelian transmission of the t haplotype to spread inactivating mutations in a haplosufficient female fertility gene (Prl). Using spatially explicit individual-based in silico modeling, we show that tCRISPR can eradicate island populations under a range of realistic field-based parameter values. We also engineer transgenic tCRISPR mice that, crucially, exhibit biased transmission of the modified t haplotype and Prl mutations at levels our modeling predicts would be sufficient for eradication. This is an example of a feasible gene drive system for invasive alien rodent population control.


Assuntos
Biodiversidade , Tecnologia de Impulso Genético , Camundongos , Feminino , Animais , Roedores , Genética Populacional , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
12.
Phys Chem Chem Phys ; 24(34): 20138-20151, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993400

RESUMO

Diketopyrrolopyrroles are a popular class of electron-withdrawing unit in optoelectronic materials. When combined with electron donating side-chain functional groups such as thiophenes, they form a very broad class of donor-acceptor molecules: thiophene-diketopyrrolopyrroles (TDPPs). Despite their widescale use in biosensors and photovoltaic materials, studies have yet to establish the important link between the electronic structure of the specific TDPP and the critical optical properties. To bridge this gap, ultrafast transient absorption with 22 fs time resolution has been used to explore the photophysics of three prototypical TDPP molecules: a monomer, dimer and polymer in solution. Interpretation of experimental data was assisted by a recent high-level theoretical study, and additional density functional theory calculations. These studies show that the photophysics of these molecular prototypes under visible photoexcitation are determined by just two excited electronic states, having very different electronic characters (one is optically bright, the other dark), their relative energetic ordering and the timescales for internal conversion from one to the other and/or to the ground state. The underlying difference in electronic structure alters the branching between these excited states and their associated dynamics. In turn, these factors dictate the fluorescence quantum yields, which are shown to vary by ∼1-2 orders of magnitude across the TDPP prototypes investigated here. The fast non-radiative transfer of molecules from the bright to dark states is mediated by conical intersections. Remarkably, wavepacket signals in the measured transient absorption data carry signatures of the nuclear motions that enable mixing of the electronic-nuclear wavefunction and facilitate non-adiabatic coupling between the bright and dark states.

13.
Sci Rep ; 12(1): 7390, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513411

RESUMO

Capture-mark-recapture/resight (CMR) methods are used for survival-rate studies, yet are often limited by small sample sizes. Advances in passive integrated transponder (PIT) technology have enabled passive detection or 'resight' of marked individuals using large antennas with greater read-ranges than previously possible. We used passively-detected resight data and CMR models to study survival rates of the southern bent-winged bat Miniopterus orianae bassanii, a critically endangered, cave-dwelling bat. Over three years, we used PIT-tagging to monitor 2966 individuals at the species' largest breeding aggregation, using daily detection data (> 1.6 million detections) to estimate seasonal survival probabilities, structured by age, sex and reproductive status, and parameterise population projection matrices. This has hitherto been impossible using traditional CMR methods due to disturbance risk and low recapture rates. Bats exhibited lowest apparent seasonal survival over summer and autumn, particularly for reproductive females in summer (when lactating) and juveniles in autumn (after weaning), and high survival in winter. Lowest survival rates coincided with severe drought in summer-autumn 2016, suggesting that dry conditions affect population viability. Under all likely demographic assumptions, population projection matrices suggested the population is in deterministic decline, requiring urgent action to reduce extinction risk. Passively-collected resight data can now be used in combination with CMR models to provide extensive, robust information for targeted wildlife population management.


Assuntos
Quirópteros , Animais , Cruzamento , Cavernas , Feminino , Humanos , Lactação , Estações do Ano
14.
Nanoscale ; 14(18): 6930-6940, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35466987

RESUMO

The development of robust and reproducible synthetic strategies for the production of carbon dots (CDs) with improved fluorescence quantum yields and distinct emission profiles is of great relevance given the vast range of applications of CDs. The fundamental understanding at a molecular level of their formation mechanism, chemical structure and how these parameters are correlated to their photoluminescence (PL) properties is thus essential. In this study, we describe the synthesis and structural characterization of a range of CDs with distinct physico-chemical properties. The materials were prepared under three minutes of microwave irradiation using the same common starting materials (D-glucosamine hydrochloride 1 and ethylenediamine 2) but modifying the stoichiometry of the reagents. We show that small variation in reaction conditions leads to changes in the fluorescent behaviour of the CDs, especially in the selective enhancement of overlapped fluorescence bands. Structural analysis of the different CD samples suggested different reaction pathways during the CD formation and surface passivation, with the latter step being key to the observed differences. Moreover, we demonstrate that these materials have distinct reversible response to pH changes, which we can be attribute to different behaviour towards protonation/deprotonation events of distinct emission domains present within each nanomaterial. Our results highlight the importance of understanding the reaction pathways that lead to the formation of this carbon-based nanomaterials and how this can be exploited to develop tailored materials towards specific applications.

15.
Mol Ecol ; 31(6): 1907-1923, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073448

RESUMO

Invasive alien species continue to threaten global biodiversity. CRISPR-based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual-based, spatially explicit, stochastic model to simulate the ability of CRISPR-based homing and X chromosome shredding drives to eradicate populations of invasive house mice (Mus muculus) from islands. Using the model, we explore the interactive effect of the efficiency of the drive constructs and the spatial ecology of the target population on the outcome of a gene-drive release. We also consider the impact of polyandrous mating and sperm competition, which could compromise the efficacy of some gene-drive strategies. Our results show that both drive strategies could be used to eradicate large populations of mice. Whereas parameters related to drive efficiency and demography strongly influence drive performance, we find that sperm competition following polyandrous mating is unlikely to impact the outcome of an eradication effort substantially. Assumptions regarding the spatial ecology of mice influenced the probability of and time required for eradication, with short-range dispersal capacities and limited mate-search areas producing 'chase' dynamics across the island characterized by cycles of local extinction and recolonization by mice. We also show that highly efficient drives are not always optimal, when dispersal and mate-search capabilities are low. Rapid local population suppression around the introduction sites can cause loss of the gene drive before it can spread to the entire island. We conclude that, although the design of efficient gene drives is undoubtedly critical, accurate data on the spatial ecology of target species are critical for predicting the result of a gene-drive release.


Assuntos
Tecnologia de Impulso Genético , Animais , Biodiversidade , Tecnologia de Impulso Genético/métodos , Espécies Introduzidas , Camundongos , Probabilidade , Vertebrados
16.
Angew Chem Int Ed Engl ; 60(45): 24144-24152, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34506069

RESUMO

Active, selective and stable catalysts are imperative for sustainable energy conversion, and engineering materials with such properties are highly desired. High-entropy alloys (HEAs) offer a vast compositional space for tuning such properties. Too vast, however, to traverse without the proper tools. Here, we report the use of Bayesian optimization on a model based on density functional theory (DFT) to predict the most active compositions for the electrochemical oxygen reduction reaction (ORR) with the least possible number of sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized with DFT and subjected to experimental validation where optimal catalytic activities are verified for Ag-Pd, Ir-Pt, and Pd-Ru binary alloys. This study offers insight into the number of experiments needed for optimizing the vast compositional space of multimetallic alloys which has been determined to be on the order of 50 for ORR on these HEAs.

17.
J Phys Chem Lett ; 12(23): 5448-5455, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081477

RESUMO

Reaction centers (RCs) are the pivotal component of natural photosystems, converting solar energy into the potential difference between separated electrons and holes that is used to power much of biology. RCs from anoxygenic purple photosynthetic bacteria such as Rhodobacter sphaeroides only weakly absorb much of the visible region of the solar spectrum, which limits their overall light-harvesting capacity. For in vitro applications such as biohybrid photodevices, this deficiency can be addressed by effectively coupling RCs with synthetic light-harvesting materials. Here, we studied the time scale and efficiency of Förster resonance energy transfer (FRET) in a nanoconjugate assembled from a synthetic quantum dot (QD) antenna and a tailored RC engineered to be fluorescent. Time-correlated single-photon counting spectroscopy of biohybrid conjugates enabled the direct determination of FRET from QDs to attached RCs on a time scale of 26.6 ± 0.1 ns and with a high efficiency of 0.75 ± 0.01.


Assuntos
Transferência de Energia , Transferência Ressonante de Energia de Fluorescência/métodos , Nanoconjugados/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Proteobactérias/química , Pontos Quânticos/química , Nanoconjugados/análise , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/análise , Pontos Quânticos/análise , Rhodobacter sphaeroides/química , Energia Solar
18.
Br Dent J ; 230(10): 624-625, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050273
19.
Adv Sci (Weinh) ; 8(9): 2003357, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33977047

RESUMO

Ligand and strain effects can tune the adsorption energy of key reaction intermediates on a catalyst surface to speed up rate-limiting steps of the reaction. As novel fields like high-entropy alloys emerge, understanding these effects on the atomic structure level is paramount: What atoms near the binding site determine the reactivity of the alloy surface? By statistical analysis of 2000 density functional theory calculations and subsequent host/guest calculations, it is shown that three atomic positions in the third layer of an fcc(111) metallic structure fourth-nearest to the adsorption site display significantly increased influence on reactivity over any second or third nearest atomic positions. Subsequently observed in multiple facets and host metals, the effect cannot be explained simply through the d-band model or a valence configuration model but rather by favorable directions of interaction determined by lattice geometry and the valence difference between host and guest elements. These results advance the general understanding of how the electronic interaction of different elements affect adsorbate-surface interactions and will contribute to design principles for rational catalyst discovery of better, more stable and energy efficient catalysts to be employed in energy conversion, fuel cell technologies, and industrial processes.

20.
Mov Ecol ; 9(1): 11, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736705

RESUMO

BACKGROUND: Globally, arid regions are expanding and becoming hotter and drier with climate change. For medium and large bodied endotherms in the arid zone, the necessity to dissipate heat drives a range of adaptations, from behaviour to anatomy and physiology. Understanding how apex predators negotiate these landscapes and how they balance their energy is important as it may have broad impacts on ecosystem function. METHODS: We used tri-axial accelerometry (ACC) and GPS data collected from free-ranging dingoes in central Australia to investigate their activity-specific energetics, and activity patterns through time and space. We classified dingo activity into stationary, walking, and running behaviours, and estimated daily energy expenditure via activity-specific time-energy budgets developed using energy expenditure data derived from the literature. We tested whether dingoes behaviourally thermoregulate by modelling ODBA as a function of ambient temperature during the day and night. We used traditional distance measurements (GPS) as well as fine-scale activity (ODBA) data to assess their daily movement patterns. RESULTS: We retrieved ACC and GPS data from seven dingoes. Their mass-specific daily energy expenditure was significantly lower in summer (288 kJ kg- 1 day- 1) than winter (495 kJ kg- 1 day- 1; p = 0.03). Overall, dingoes were much less active during summer where 91% of their day was spent stationary in contrast to just 46% during winter. There was a sharp decrease in ODBA with increasing ambient temperature during the day (R2 = 0.59), whereas ODBA increased with increasing Ta at night (R2 = 0.39). Distance and ODBA were positively correlated (R = 0.65) and produced similar crepuscular patterns of activity. CONCLUSION: Our results indicate that ambient temperature may drive the behaviour of dingoes. Seasonal differences of daily energy expenditure in free-ranging eutherian mammals have been found in several species, though this was the first time it has been observed in a wild canid. We conclude that the negative relationship between dingo activity (ODBA) and ambient temperature during the day implies that high heat gain from solar radiation may be a factor limiting diurnal dingo activity in an arid environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA