Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(29): eadh5552, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467340

RESUMO

Clostridioides difficile damages the colonic mucosa through the action of two potent exotoxins. Factors shaping C. difficile pathogenesis are incompletely understood but are likely due to the ecological factors in the gastrointestinal ecosystem, mucosal immune responses, and environmental factors. Little is known about the role of pharmaceutical drugs during C. difficile infection (CDI), but recent studies have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) worsen CDI. The mechanism underlying this phenomenon remains unclear. Here, we show that NSAIDs exacerbate CDI by disrupting colonic epithelial cells (CECs) and sensitizing cells to C. difficile toxin-mediated damage independent of their canonical role of inhibiting cyclooxygenase (COX) enzymes. Notably, we find that NSAIDs and C. difficile toxins target the mitochondria of CECs and enhance C. difficile toxin-mediated damage. Our results demonstrate that NSAIDs exacerbate CDI by synergizing with C. difficile toxins to damage host cell mitochondria. Together, this work highlights a role for NSAIDs in exacerbating microbial infection in the colon.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Toxinas Bacterianas/toxicidade , Ecossistema , Anti-Inflamatórios não Esteroides/efeitos adversos , Células Epiteliais
2.
Nat Rev Microbiol ; 20(5): 285-298, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34837014

RESUMO

Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.


Assuntos
Antitoxinas , Toxinas Bacterianas , Clostridioides difficile , Antitoxinas/uso terapêutico , Proteínas de Bactérias , Diarreia/tratamento farmacológico , Humanos
3.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33468584

RESUMO

Clostridioides difficile is linked to nearly 225,000 antibiotic-associated diarrheal infections and almost 13,000 deaths per year in the United States. Pathogenic strains of C. difficile produce toxin A (TcdA) and toxin B (TcdB), which can directly kill cells and induce an inflammatory response in the colonic mucosa. Hirota et al. (S. A. Hirota et al., Infect Immun 80:4474-4484, 2012) first introduced the intrarectal instillation model of intoxication using TcdA and TcdB purified from VPI 10463 (VPI 10463 reference strain [ATCC 43255]) and 630 C. difficile strains. Here, we expand this technique by instilling purified, recombinant TcdA and TcdB, which allows for the interrogation of how specifically mutated toxins affect tissue. Mouse colons were processed and stained with hematoxylin and eosin for blinded evaluation and scoring by a board-certified gastrointestinal pathologist. The amount of TcdA or TcdB needed to produce damage was lower than previously reported in vivo and ex vivo Furthermore, TcdB mutants lacking either endosomal pore formation or glucosyltransferase activity resemble sham negative controls. Immunofluorescent staining revealed how TcdB initially damages colonic tissue by altering the epithelial architecture closest to the lumen. Tissue sections were also immunostained for markers of acute inflammatory infiltration. These staining patterns were compared to slides from a human C. difficile infection (CDI). The intrarectal instillation mouse model with purified recombinant TcdA and/or TcdB provides the flexibility needed to better understand structure/function relationships across different stages of CDI pathogenesis.


Assuntos
Clostridioides difficile/patogenicidade , Suscetibilidade a Doenças , Enterocolite Pseudomembranosa/microbiologia , Enterotoxinas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/genética , Colo , Modelos Animais de Doenças , Enterotoxinas/genética , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Camundongos , Proteínas Mutantes
4.
Proc Natl Acad Sci U S A ; 117(11): 6139-6144, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123082

RESUMO

Clostridioides difficile is a Gram-positive, pathogenic bacterium and a prominent cause of hospital-acquired diarrhea in the United States. The symptoms of C. difficile infection are caused by the activity of three large toxins known as toxin A (TcdA), toxin B (TcdB), and the C. difficile transferase toxin (CDT). Reported here is a 3.8-Å cryo-electron microscopy (cryo-EM) structure of CDT, a bipartite toxin comprised of the proteins CDTa and CDTb. We observe a single molecule of CDTa bound to a CDTb heptamer. The formation of the CDT complex relies on the interaction of an N-terminal adaptor and pseudoenzyme domain of CDTa with six subunits of the CDTb heptamer. CDTb is observed in a preinsertion state, a conformation observed in the transition of prepore to ß-barrel pore, although we also observe a single bound CDTa in the prepore and ß-barrel conformations of CDTb. The binding interaction appears to prime CDTa for translocation as the adaptor subdomain enters the lumen of the preinsertion state channel. These structural observations advance the understanding of how a single protein, CDTb, can mediate the delivery of a large enzyme, CDTa, into the cytosol of mammalian cells.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Transferases/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica em Folha beta , Multimerização Proteica , Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA