Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Environ Manage ; 344: 118474, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364496

RESUMO

Pulp mill biosolids (hereafter 'biosolids') could be used as an organic amendment to improve soil fertility and promote crop growth; however, it is unclear how the application of biosolids affects soil greenhouse gas emissions and the mechanisms underlying these effects. Here, we conducted a 2-year field experiment on a 6-year-old hybrid poplar plantation in northern Alberta, Canada, to compare the effects of biosolids, conventional mineral fertilizer (urea), and urea + biosolids on soil CO2, CH4 N2O emissions, as well as soil chemical and microbial properties. We found that the addition of biosolids increased soil CO2 and N2O emissions by 21 and 17%, respectively, while urea addition increased their emissions by 30 and 83%, respectively. However, the addition of urea did not affect soil CO2 emissions when biosolids were also applied. The addition of biosolids and biosolids + urea increased soil dissolved organic carbon (DOC) and microbial biomass C (MBC), while urea addition and biosolids + urea addition increased soil inorganic N, available P and denitrifying enzyme activity (DEA). Furthermore, the CO2 and N2O emissions were positively, while the CH4 emissions were negatively associated with soil DOC, inorganic N, available phosphorus, MBC, microbial biomass N, and DEA. In addition, soil CO2, CH4 and N2O emissions were also strongly associated with soil microbial community composition. We conclude that the application of the combination of biosolids and chemical N fertilizer (urea) could be a beneficial approach for both the disposal and use of pulp mill wastes, by reducing greenhouse gas emissions and improving soil fertility.


Assuntos
Gases de Efeito Estufa , Solo , Solo/química , Gases de Efeito Estufa/análise , Biossólidos , Dióxido de Carbono/análise , Ureia , Fertilizantes , Nitrogênio/análise , Alberta , Óxido Nitroso/análise , Agricultura , Metano/análise
2.
Front Plant Sci ; 14: 1052425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077625

RESUMO

Tree improvement programs select genotypes for faster growth, at both early and late stages, to increase yields over unimproved material, and the improvement is frequently attributed to genetic control in growth parameters among genotypes. Underutilized genetic variability among genotypes also has the potential to ensure future gains are possible. However, the genetic variation in growth, physiology and hormone control among genotypes generated from different breeding strategies has not been well characterized in conifers. We assessed growth, biomass, gas exchange, gene expression and hormone levels in white spruce seedlings obtained from three different breeding strategies (controlled crosses, polymix pollination, open pollination) using parents grafted into a clonal seed orchard in Alberta, Canada. A pedigree-based best linear unbiased prediction (ABLUP) mixed model was implemented to quantify variability and narrow-sense heritability for target traits. The levels of several hormones and expression of gibberellin-related genes in apical internodes were also determined. Over the first two years of development, the estimated heritabilities for height, volume, total dry biomass, above ground dry biomass, root:shoot ratio and root length, varied between 0.10 and 0.21, with height having the highest value. The ABLUP values showed large genetic variability in growth and physiology traits both between families from different breeding strategies, and within families. The principal component analysis showed that developmental and hormonal traits explained 44.2% and 29.4% of the total phenotypic variation between the three different breeding strategies and two growth groups. In general, controlled crosses from the fast growth group showed the best apical growth, with more accumulation of indole-3-acetic acid, abscisic acid, phaseic acid, and a 4-fold greater gene expression of PgGA3ox1 in genotypes from controlled crosses versus those from open pollination. However, in some cases, open pollination from the fast and slow growth groups showed the best root development, higher water use efficiency (iWUE and δ13C) and more accumulation of zeatin and isopentenyladenosine. In conclusion, tree domestication can lead to trade-offs between growth, carbon allocation, photosynthesis, hormone levels and gene expression, and we encourage the use of this phenotypic variation identified in improved and unimproved trees to advance white spruce tree improvement programs.

3.
Evolution ; 77(3): 893-906, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637132

RESUMO

The environment could alter growth and resistance tradeoffs in plants by affecting the ratio of resource allocation to various competing traits. Yet, how and why functional tradeoffs change over time and space is poorly understood particularly in long-lived conifer species. By establishing four common-garden test sites for five lodgepole pine populations in western Canada, combined with genomic sequencing, we revealed the decoupling pattern and genetic underpinnings of tradeoffs between height growth, drought resistance based on δ13C and dendrochronology, and metrics of pest resistance based on pest suitability ratings. Height and δ13C correlation displayed a gradient change in magnitude and/or direction along warm-to-cold test sites. All cold test sites across populations showed a positive height and δ13C relationship. However, we did not observe such a clinal correlation pattern between height or δ13C and pest suitability. Further, we found that the study populations exhibiting functional tradeoffs or synergies to various degrees in test sites were driven by non-adaptive evolutionary processes rather than adaptive evolution or plasticity. Finally, we found positive genetic relationships between height and drought or pest resistance metrics and probed five loci showing potential genetic tradeoffs between northernmost and the other populations. Our findings have implications for deciphering the ecological, evolutionary, and genetic bases of the decoupling of functional tradeoffs due to environmental change.


Assuntos
Secas , Pinus , Canadá , Árvores , Pinus/genética
4.
Proc Biol Sci ; 289(1982): 20221034, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36069017

RESUMO

While droughts, intensified by climate change, have been affecting forests worldwide, pest epidemics are a major source of uncertainty for assessing drought impacts on forest trees. Thus far, little information has documented the adaptability and evolvability of traits related to drought and pests simultaneously. We conducted common-garden experiments to investigate how several phenotypic traits (i.e. height growth, drought avoidance based on water-use efficiency inferred from δ13C and pest resistance based on defence traits) interact in five mature lodgepole pine populations established in four progeny trials in western Canada. The relevance of interpopulation variation in climate sensitivity highlighted that seed-source warm populations had greater adaptive capability than cold populations. In test sites, warming generated taller trees with higher δ13C and increased the evolutionary potential of height growth and δ13C across populations. We found, however, no pronounced gradient in defences and their evolutionary potential along populations or test sites. Response to selection was weak in defences across test sites, but high for height growth particularly at warm test sites. Response to the selection of δ13C varied depending on its selective strength relative to height growth. We conclude that warming could promote the adaptability and evolvability of growth response and drought avoidance with a limited evolutionary influence from pest (biotic) pressures.


Assuntos
Secas , Pinus , Mudança Climática , Florestas , Pinus/genética , Árvores/fisiologia
5.
BMC Genomics ; 23(1): 536, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35870886

RESUMO

BACKGROUND: Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. RESULTS: MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. CONCLUSIONS: The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date.


Assuntos
Estudo de Associação Genômica Ampla , Pinus , Mudança Climática , Genômica/métodos , Modelos Genéticos , Fenótipo , Pinus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Árvores
6.
PLoS One ; 17(3): e0264549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298481

RESUMO

Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.


Assuntos
Picea , Genômica/métodos , Genótipo , Fenótipo , Picea/genética , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único
7.
Heredity (Edinb) ; 128(4): 209-224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181761

RESUMO

Modeling environmental spatial heterogeneity can improve the efficiency of forest tree genomic evaluation. Furthermore, genotyping costs can be lowered by reducing the number of markers needed. We investigated the impact on variance components, breeding value accuracy, and bias of two phenotypic data adjustments (experimental design and autoregressive spatial models), and a relationship matrix calculated from a subset of markers selected for their ability to infer ancestry. Using a multiple-trait multiple-site single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) approach, four scenarios (2 phenotype adjustments × 2 marker sets) were applied to diameter at breast height (DBH), height (HT), and resistance to western gall rust (WGR) in four open-pollinated progeny trials of lodgepole pine, with 1490 (out of 11,188) trees genotyped with 25,099 SNPs. As a control, we fitted the conventional ABLUP model using pedigree information. The highest heritability estimates were achieved for the ABLUP followed closely by the ssGBLUP with the full marker set and using the spatial phenotype adjustments. The highest predictive ability was obtained by using a reduced marker subset (8000 SNPs) when either the spatial (DBH: 0.429, and WGR: 0.513) or design (HT: 0.467) phenotype corrections were used. No significant difference was detected in prediction bias among the six fitted models, and all values were close to 1 (0.918-1.014). Results demonstrated that selecting informative markers, such as those capturing ancestry, can improve the predictive ability. The use of spatial correlation structure increased traits' heritability and reduced prediction bias, while increases in predictive ability were trait-dependent.


Assuntos
Pinus , Polimorfismo de Nucleotídeo Único , Genoma , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Pinus/genética , Melhoramento Vegetal
8.
Sci Rep ; 11(1): 4990, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654140

RESUMO

Accurate monitoring of genetic diversity levels of seedlots and mating patterns of parents from seed orchards are crucial to ensure that tree breeding programs are long-lasting and will deliver anticipated genetic gains. We used SNP genotyping to characterize founder trees, five bulk seed orchard seedlots, and trees from progeny trials to assess pollen contamination and the impact of severe roguing on genetic diversity and parental contributions in a first-generation open-pollinated white spruce clonal seed orchard. After severe roguing (eliminating 65% of the seed orchard trees), we found a slight reduction in the Shannon Index and a slightly negative inbreeding coefficient, but a sharp decrease in effective population size (eightfold) concomitant with sharp increase in coancestry (eightfold). Pedigree reconstruction showed unequal parental contributions across years with pollen contamination levels between 12 and 51% (average 27%) among seedlots, and 7-68% (average 30%) among individual genotypes within a seedlot. These contamination levels were not correlated with estimates obtained using pollen flight traps. Levels of pollen contamination also showed a Pearson's correlation of 0.92 with wind direction, likely from a pollen source 1 km away from the orchard under study. The achievement of 5% genetic gain in height at rotation through eliminating two-thirds of the orchard thus generated a loss in genetic diversity as determined by the reduction in effective population size. The use of genomic profiles revealed the considerable impact of roguing on genetic diversity, and pedigree reconstruction of full-sib families showed the unanticipated impact of pollen contamination from a previously unconsidered source.


Assuntos
Variação Genética , Picea/genética , Melhoramento Vegetal , Pólen/genética , Alberta
9.
Tree Physiol ; 41(3): 472-490, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33080619

RESUMO

Nine open-pollinated families of Picea glauca (Moench) Voss from the Region D1 Controlled Parentage Program (Alberta, Canada) were systematically chosen from fast, medium and slow-growth rankings based on breeding values for height from field progeny tests at age 30 years. Seeds from these families were sown and grown to age 3 years to analyze the performance and correlations of growth, physiological traits and expression of gibberellin-related genes, with and without elevated gibberellic acid 3 (GA3) application, under greenhouse conditions. We observed a significant interaction effect between families and growth groups subjected to 50 µg µl-1 of GA3 treatment, causing a decrease in apical internode length, diameter, volume and absolute transcript level for fast-growing families but an increase for families in the slow-growth group for the same traits. We also observed that in the apical internode, the gene PgGA20ox1 had significantly more relative expression under the elevated GA3 treatment than the control trees. In the stem, PgGA3ox1 showed a significantly higher relative expression under elevated GA3 treatment compared with control trees. Also, the slow-growth group showed more relative expression of PgGA20ox1 (in the apical internode) and PgGA3ox1 (in the stem) than the fast-growth group. The apical internode length and diameter significantly increased by 24% and 16%, respectively, with the hormone treatment in the slow growing group. In general, the PgGID1 and PgDELLA1 genes were upregulated and downregulated respectively, in spruce shoots under the GA3 treatment, meaning a positive feedback regulation by those genes were influencing PgGA20ox1 and PgGA3ox1 expression in that tissue type. Moreover, there was a significant correlation between absolute transcript levels of PgGA20ox1 in the apical internode and apical internode length, and absolute transcript levels of PgGA3ox1 in the stem and the diameter, in the fast-growth group families. This study shows that expression of GA genes is a limiting factor for growth in certain white spruce families with a complex feedback mechanism. Finally, absolute transcript levels of endogenous GA relative to growth parameters in juvenile seedlings could potentially be used to accelerate the early selection of families with inherently rapid apical and radial growth expansion.


Assuntos
Giberelinas , Picea , Alberta , Expressão Gênica , Giberelinas/farmacologia , Picea/genética , Melhoramento Vegetal , Árvores/genética
10.
Plants (Basel) ; 8(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621354

RESUMO

A population of eight open pollinated families of Pinus contorta was selected from sites varying in precipitation regimes and elevation to examine the possible role of aquaporins in adaptation to different moisture conditions. Five Pinus contorta aquaporins encoding PiconPIP2;1, PiconPIP2;2, PiconPIP2;3, PiconPIP1;2, and PiconTIP1;1 were cloned and detailed structural analyses were conducted to provide essential information that can explain their biological and molecular function. All five PiconAQPs contained hydrophilic aromatic/arginine selective filters to facilitate the transport of water. Transcript abundance patterns of PiconAQPs varied significantly across the P. contorta families under varying soil moisture conditions. The transcript abundance of five PiconPIPs remained unchanged under control and water-stress conditions in two families that originated from the sites with lower precipitation levels. These two families also displayed a different adaptive strategy of photosynthesis to cope with drought stress, which was manifested by reduced sensitivity in photosynthesis (maintaining the same rate) while exhibiting a reduction in stomatal conductance. In general, root:shoot ratios were not affected by drought stress, but some variation was observed between families. The results showed variability in drought coping mechanisms, including the expression of aquaporin genes and plant biomass allocation among eight families of Pinus contorta.

11.
Ecol Evol ; 6(19): 6846-6854, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725365

RESUMO

Balsam poplar seeds are short-lived and require moist seedbeds soon after they are released to germinate. In addition to sexual reproduction, balsam poplar stands can regenerate clonally by root suckering. The origin of stands will in turn affect their genetic structure and root system architecture, which are poorly understood for upland forest stands. Three stands were hydraulically excavated in Quebec (moist) and Alberta (dry) to determine the origin of trees and to characterize root systems with respect to presence of parental roots and root grafts connections. Clones were identified using single-nucleotide polymorphism (SNPs), and all stems, roots and root grafts were aged using dendrochronology techniques. All 82 excavated trees were of sucker origin, and four of the six stands contained a single clone. Parental root connections were found between 22% and 25% of excavated trees, and 53% and 48% of trees were linked with a root graft between the same or different clones, in Alberta and Quebec, respectively. Mean distance between trees connected by parental root was significantly lower than the distance between unconnected trees (0.47 ± 0.25 m vs. 3.14 ± 0.15 m and 1.55 ± 0.27 m vs. 4.25 ± 0.13 m) in Alberta and in Quebec, respectively. The excavations also revealed many dead stumps with live roots, maintained through root connections with live trees. This research highlights that balsam poplar growing in upland stands is a clonal species that can maintain relatively high genotypic diversity, with frequent root connections between trees at maturity. Maintaining an extensive root system through root connections increases the chances of a clone surviving when the above ground tree is dead and may also enhance the resilience of balsam poplar stands after disturbance.

12.
Plant Cell Environ ; 39(2): 272-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26177991

RESUMO

Hybrid poplars are an important renewable forest resource known for their high productivity. At the same time, they are highly vulnerable to water stress. Identifying traits that can serve as indicators for growth performance remains an important task, particularly under field conditions. Understanding which trait combinations translate to improved productivity is key in order to satisfy the demand for poplar wood in an uncertain future climate. In this study, we compared hydraulic and leaf traits among five hybrid poplar clones at 10 plantations in central Alberta. We also assessed the variation of these traits between 2- to 3-year-old branches from the lower to mid-crown and current-year long shoots from the mid to upper crown. Our results showed that (1) hybrid poplars differed in key hydraulic parameters between branch type, (2) variation of hydraulic traits among clones was relatively large for some clones and less for others, and (3) strong relationships between measured hydraulic traits, such as vessel diameter, cavitation resistance, xylem-specific and leaf-specific conductivity and leaf area, were observed. Our results suggest that leaf size could serve as an additional screening tool when selecting for drought-tolerant genotypes in forest management and tree improvement programmes.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Geografia , Tamanho do Órgão , Brotos de Planta/fisiologia , Característica Quantitativa Herdável , Água
13.
Plant Cell Environ ; 36(2): 419-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22897210

RESUMO

In recent years, thousands of hectares of hybrid poplar plantations have been established in Canada for the purpose of carbon sequestration and wood production. However, boreal planting environments pose special challenges that may compromise the long-term survival and productivity of such plantations. In this study, we evaluated the effect of winter stress, that is, frequent freeze-thaw and extreme cold events, on growth and survival of 47 hybrid poplar clones in a long-term field experiment. We further assessed physiological and structural traits that are potentially important for cold tolerance for a selected set of seven clones. We found that trees with narrow xylem vessels showed reduced freezing-induced embolism and showed superior productivity after 16 growing seasons. With respect to cold hardiness of living tissues, we only observed small differences among clones in early autumn, which were nonetheless significantly correlated to growth. Maximum winter cold hardiness and the timing of leaf senescence and budbreak were not related to growth or survival. In conclusion, our data suggest that reduction of freezing-induced embolism due to small vessel diameters is an essential adaptive trait to ensure long-term productivity of hybrid poplar plantations in boreal planting environments.


Assuntos
Temperatura Baixa , Populus/crescimento & desenvolvimento , Populus/fisiologia , Estações do Ano , Estresse Fisiológico , Árvores/fisiologia , Flores/fisiologia , Hibridização Genética , Folhas de Planta/crescimento & desenvolvimento , Populus/anatomia & histologia , Populus/citologia , Fatores de Tempo
14.
PLoS One ; 8(12): e84437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386379

RESUMO

Hybrid genotypes that arise between plant species frequently have increased susceptibility to arthropod pests and fungal pathogens. This pattern has been attributed to the breakdown of plant defenses ('Hybrid susceptibility' hypothesis) and (or) to extended periods of susceptibility attributed to plant phenologies in zones of species overlap and (or) hybridization ('phenological sink' hypothesis). We examined these hypotheses by assessing the susceptibility of parental and hybrid Populus host genotypes to a leaf spot disease caused by the fungal pathogen Septoria musiva. For this purpose, 214 genotypes were obtained from morphologically pure zones of P. balsamifera and P. deltoides, and from an intervening zone of overlap and hybridization on the drainage of the Red Deer River, Alberta, Canada. Genotypes were identified as P. balsamifera, P. deltoides, or hybrid using a suite of 27 species-specific SNP markers. Initially the genetic structure of the hybrid zone was characterized with 27.7% of trees classified as admixed individuals. To test the hybrid susceptibility hypothesis, a subset of 52 genotypes was inoculated with four isolates of S. musiva. Levels of susceptibility were P. balsamifera > F1 hybrid > P. deltoides. A further 53 genotypes were grown in a common garden to assess the effect of genotype on variation in leaf phenology. Leaf phenology was more variable within the category of hybrid genotypes than within categories of either parental species. Leaf phenology was also more variable for the category of trees originating in the hybrid (P. balsamifera - P. deltoides [hybrid and parental genotypes combined]) zone than in adjacent pure zones of the parental species. The results from the inoculation experiment support the hybrid intermediacy hypothesis. The results from the common garden experiment support the 'phenological sink' hypothesis. These findings have greatly increased our understanding of the epidemiology and ecology of fungal pathogens in plant hybrid zones.


Assuntos
Ascomicetos , Quimera/genética , Resistência à Doença/genética , Genes de Plantas , Genótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Populus/genética , Quimera/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Populus/microbiologia
15.
PLoS One ; 7(8): e44303, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957006

RESUMO

BACKGROUND: Aspen naturally grows in large, single-species, even-aged stands that regenerate clonally after fire disturbance. This offers an opportunity for an intensive clonal forestry system that closely emulates the natural life history of the species. In this paper, we assess the potential of genetic tree improvement and clonal deployment to enhance the productivity of aspen forests in Alberta. We further investigate geographic patterns of genetic variation in aspen and infer forest management strategies under uncertain future climates. METHODOLOGY/PRINCIPAL FINDINGS: Genetic variation among 242 clones from Alberta was evaluated in 13 common garden trials after 5-8 growing seasons in the field. Broad-sense heritabilities for height and diameter at breast height (DBH) ranged from 0.36 to 0.64, allowing 5-15% genetic gains in height and 9-34% genetic gains in DBH. Geographic partitioning of genetic variance revealed predominant latitudinal genetic differentiation. We further observed that northward movement of clones almost always resulted in increased growth relative to local planting material, while southward movement had a strong opposite effect. CONCLUSION/SIGNIFICANCE: Aspen forests are an important natural resource in western Canada that is used for pulp and oriented strandboard production, accounting for ~40% of the total forest harvest. Moderate to high broad-sense heritabilities in growth traits suggest good potential for a genetic tree improvement program with aspen. Significant productivity gains appear possible through clonal selection from existing trials. We propose two breeding regions for Alberta, and suggest that well-tested southern clones may be used in the northern breeding region, accounting for a general warming trend observed over the last several decades in Alberta.


Assuntos
Cruzamento , Populus/genética , Seleção Genética , Alberta , Agricultura Florestal , Variação Genética , Fenótipo , Filogenia , Populus/crescimento & desenvolvimento , Análise de Regressão
16.
J Exp Bot ; 63(13): 4959-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22760471

RESUMO

Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Populus/genética , Estresse Fisiológico/fisiologia , Secas , Genótipo , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , RNA Mensageiro/genética , RNA de Plantas/genética , Transdução de Sinais/fisiologia , Água/fisiologia
17.
Proc Natl Acad Sci U S A ; 108(30): 12521-6, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746919

RESUMO

Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.


Assuntos
Populus/genética , Populus/fisiologia , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Bases , Clonagem de Organismos , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Secas , Ecossistema , Perfilação da Expressão Gênica , Genótipo , Hibridização Genética , Modelos Biológicos , Regiões Promotoras Genéticas , RNA de Plantas/genética , RNA não Traduzido/genética
18.
Physiol Plant ; 143(2): 154-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21623799

RESUMO

The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress.


Assuntos
Estômatos de Plantas/fisiologia , Populus/fisiologia , Xilema/fisiologia , Secas , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal , Populus/metabolismo , Solo/química , Especificidade da Espécie , Estresse Fisiológico , Água/metabolismo , Xilema/metabolismo
19.
New Phytol ; 190(1): 150-160, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223285

RESUMO

Intensive forestry systems and breeding programs often include either native aspen or hybrid poplar clones, and performance and trait evaluations are mostly made within these two groups. Here, we assessed how traits with potential adaptive value varied within and across these two plant groups. Variation in nine hydraulic and wood anatomical traits as well as growth were measured in selected aspen and hybrid poplar genotypes grown at a boreal planting site in Alberta, Canada. Variability in these traits was statistically evaluated based on a blocked experimental design. We found that genotypes of trembling aspen were more resistant to cavitation, exhibited more negative water potentials, and were more water-use-efficient than hybrid poplars. Under the boreal field test conditions, which included major regional droughts, height growth was negatively correlated with branch vessel diameter (Dv ) in both aspen and hybrid poplars and differences in Dv were highly conserved in aspen trees from different provenances. Differences between the hybrid poplars and aspen provenances suggest that these two groups employ different water-use strategies. The data also suggest that vessel diameter may be a key trait in evaluating growth performance in a boreal environment.


Assuntos
Variação Genética , Hibridização Genética , Populus/anatomia & histologia , Populus/genética , Característica Quantitativa Herdável , Madeira/anatomia & histologia , Madeira/genética , Canadá , Geografia , Folhas de Planta/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , Pressão , Estações do Ano , Sementes/genética , Água , Madeira/crescimento & desenvolvimento , Madeira/fisiologia , Xilema/fisiologia
20.
Plant Cell Environ ; 33(10): 1742-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20525001

RESUMO

Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of genome responsiveness to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome using six different Populus balsamifera L. genotypes and Affymetrix GeneChip technology. Within a given genotype there was a positive correlation between the magnitude of water-deficit induced changes in transcript abundance across the transcriptome, and the capacity of that genotype to maintain growth following water deficit. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses.


Assuntos
Secas , Variação Genética , Populus/genética , Adaptação Fisiológica , DNA de Plantas , Perfilação da Expressão Gênica , Genótipo , Populus/fisiologia , RNA de Plantas , Especificidade da Espécie , Estresse Fisiológico , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA