Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 150, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452376

RESUMO

BACKGROUND: Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama's tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. RESULTS: We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the "socially associated" bacterial taxa, which unexpectedly demonstrated high sequence variation. CONCLUSIONS: Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Abelhas , Animais , Microbiota/genética , Comportamento Social , Microbioma Gastrointestinal/genética , Florestas
2.
Microbiol Spectr ; 9(1): e0002921, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34232099

RESUMO

Microbial communities in the airways of persons with CF (pwCF) are variable, may include genera that are not typically associated with CF, and their composition can be difficult to correlate with long-term disease outcomes. Leveraging two large data sets characterizing sputum communities of 167 pwCF and associated metadata, we identified five bacterial community types. These communities explain 24% of the variability in lung function in this cohort, far more than single factors like Simpson diversity, which explains only 4%. Subjects with Pseudomonas-dominated communities tended to be older and have reduced percent predicted FEV1 (ppFEV1) compared to subjects with Streptococcus-dominated communities, consistent with previous findings. To assess the predictive power of these five communities in a longitudinal setting, we used random forests to classify 346 additional samples from 24 subjects observed 8 years on average in a range of clinical states. Subjects with mild disease were more likely to be observed at baseline, that is, not in the context of a pulmonary exacerbation, and community structure in these subjects was more self-similar over time, as measured by Bray-Curtis distance. Interestingly, we found that subjects with mild disease were more likely to remain in a mixed Pseudomonas community, providing some support for the climax-attack model of the CF airway. In contrast, patients with worse outcomes were more likely to show shifts among community types. Our results suggest that bacterial community instability may be a risk factor for lung function decline and indicates the need to understand factors that drive shifts in community composition. IMPORTANCE While much research supports a polymicrobial view of the CF airway, one in which the community is seen as the pathogenic unit, only controlled experiments using model bacterial communities can unravel the mechanistic role played by different communities. This report uses a large data set to identify a small number of communities as a starting point in the development of tractable model systems. We describe a set of five communities that explain 24% of the variability in lung function in our data set, far more than single factors like Simpson diversity, which explained only 4%. In addition, we report that patients with severe disease experienced more shifts among community types, suggesting that bacterial community instability may be a risk factor for lung function decline. Together, these findings provide a proof of principle for selecting bacterial community model systems.


Assuntos
Fibrose Cística/microbiologia , Microbiota , Adolescente , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Criança , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Escarro/microbiologia , Adulto Jovem
3.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624170

RESUMO

Here, we report 10 bacterial strains isolated from an abandoned coal mine in southeast Kansas to determine their potential for bioremediation through comparison of the genome sizes and distribution patterns of unique metabolic genes. The selected strains belong to the genera Arthrobacter, Jeotgalibacillus, Kocuria, Microbacterium, Pantoea, Rhodococcus, Vibrio, Brevibacterium, and Paenibacillus.

4.
Nanotechnology ; 22(18): 185503, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21427463

RESUMO

High temperature luminescence-based sensing is demonstrated by embedding colloidal CdSe(ZnS) quantum dots into a high temperature SiO(2) dielectric matrix. The nanocomposite was fabricated by a solution process method. As-prepared CdSe(ZnS) quantum dots in the nanocomposite sensor show an absorption band at a wavelength of 600 nm (2.06 eV). Photoluminescence (PL) measurements show a room temperature emission peak at 606 nm (2.04 eV). The temperature-dependent emission spectra study shows for the first time a CdSe(ZnS)-SiO(2) nanocomposite-based high temperature sensor. The temperature-dependent spectral and intensity modes of the nanocomposite thin film photoluminescence were investigated from 295-525 K. The sensor shows a variation of the emission wavelength as a function of temperature with a sensitivity of ∼ 0.11 nm °C( - 1). The film morphology and roughness are characterized using AFM.

5.
Appl Opt ; 49(15): 2891-7, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20490251

RESUMO

Characterization of absorption, emission, and temperature-dependent luminescent features is of significant interest for the development of optical temperature sensors and photonic devices. In this work, we conduct a comprehensive study to evaluate the orientation axis-dependent absorption and emission cross sections of Cr(3+) ions in BeAl(2)O(4). In addition, we present new data for the temperature-dependent Stark-level energies for alexandrite. Laser-induced temperature-dependent luminescence data from 300-520K on the R-line transitions are presented for application to high-temperature sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA