Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genome Med ; 16(1): 7, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184646

RESUMO

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças Retinianas , Humanos , Regiões 5' não Traduzidas , c-Mer Tirosina Quinase , Retina , Doenças Retinianas/genética , Isoformas de Proteínas , Oxirredutases do Álcool
2.
Eur J Med Genet ; 67: 104907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141875

RESUMO

Genetic variants in ATP7A are associated with a spectrum of X-linked disorders. In descending order of severity, these are Menkes disease, occipital horn syndrome, and X-linked distal spinal muscular atrophy. After 30 years of diagnostic investigation, we identified a deep intronic ATP7A variant in four males from a family affected to variable degrees by a predominantly skeletal phenotype, featuring bowing of long bones, elbow joints with restricted mobility which dislocate frequently, coarse curly hair, chronic diarrhoea, and motor coordination difficulties. Analysis of whole genome sequencing data from the Genomics England 100,000 Genomes Project following clinical re-evaluation identified a deep intronic ATP7A variant, which was predicted by SpliceAI to have a modest splicing effect. Using a mini-gene splicing assay, we determined that the intronic variant results in aberrant splicing. Sanger sequencing of patient cDNA revealed ATP7A transcripts with exon 5 skipping, or inclusion of a novel intron 4 pseudoexon. In both instances, frameshift leading to premature termination are predicted. Quantification of ATP7A mRNA transcripts using a qPCR assay indicated that the majority of transcripts (86.1 %) have non-canonical splicing, with 68.0 % featuring exon 5 skipping, and 18.1 % featuring the novel pseudoexon. We suggest that the variability of the phenotypes within the affected males results from the stochastic effects of splicing. This deep intronic variant, resulting in aberrant ATP7A splicing, expands the understanding of intronic variation on the ATP7A-related disease spectrum.


Assuntos
Cútis Laxa , Síndrome de Ehlers-Danlos , Humanos , Masculino , ATPases Transportadoras de Cobre/genética , Cútis Laxa/genética , Síndrome de Ehlers-Danlos/genética , Mutação , Fragmentos de Peptídeos/genética , Fenótipo
3.
Eur J Hum Genet ; 31(10): 1190-1194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558808

RESUMO

Biallelic hypomorphic variants in PRORP have been recently described as causing the autosomal recessive disorder combined oxidative phosphorylation deficiency type 54 (COXPD54). COXPD54 encompasses a phenotypic spectrum of sensorineural hearing loss and ovarian insufficiency (Perrault syndrome) to leukodystrophy. Here, we report three additional families with homozygous missense PRORP variants with pleiotropic phenotypes. Each missense variant altered a highly conserved residue within the metallonuclease domain. In vitro mitochondrial tRNA processing assays with recombinant TRMT10C, SDR5C1 and PRORP indicated two COXPD54-associated PRORP variants, c.1159A>G (p.Thr387Ala) and c.1241C>T (p.Ala414Val), decreased pre-tRNAIle cleavage, consistent with both variants impacting tRNA processing. No significant decrease in tRNA processing was observed with PRORP c.1093T>C (p.Tyr365His), which was identified in an individual with leukodystrophy. These data provide independent evidence that PRORP variants are associated with COXPD54 and that the assessment of 5' leader mitochondrial tRNA processing is a valuable assay for the functional analysis and clinical interpretation of novel PRORP variants.


Assuntos
Perda Auditiva Neurossensorial , Doenças Mitocondriais , Ribonuclease P , Feminino , Humanos , Genótipo , Perda Auditiva Neurossensorial/genética , Homozigoto , Doenças Mitocondriais/genética , RNA de Transferência , Ribonuclease P/genética
5.
Sci Adv ; 8(20): eabn2265, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584218

RESUMO

Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFß. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.


Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peixe-Zebra/genética
6.
Clin Genet ; 101(2): 255-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713892

RESUMO

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Assuntos
Atresia das Cóanas/diagnóstico , Atresia das Cóanas/genética , Surdez/congênito , Genótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Ribonucleoproteína Nuclear Pequena U5/genética , Alelos , Sítios de Ligação , Surdez/diagnóstico , Surdez/genética , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Linhagem , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Fatores de Transcrição/metabolismo
7.
Sci Rep ; 11(1): 20607, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663891

RESUMO

The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being 'pathogenic' or 'benign' is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as 'pathogenic' or 'likely pathogenic'; one in five of these cases could lead to new or refined diagnoses.


Assuntos
Biologia Computacional/métodos , Doença/genética , Splicing de RNA/genética , Algoritmos , Bases de Dados Genéticas , Diagnóstico , Diagnóstico Diferencial , Técnicas e Procedimentos Diagnósticos , Éxons/genética , Variação Genética/genética , Genômica/métodos , Humanos , Mutação/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética
8.
Nat Genet ; 53(5): 630-637, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958779

RESUMO

The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.


Assuntos
Predisposição Genética para Doença , Genômica , Hipertensão/genética , Rim/patologia , Processamento Alternativo/genética , Pressão Sanguínea/genética , Metilação de DNA/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
10.
PLoS One ; 15(7): e0233582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735620

RESUMO

The craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, branch point to 3' splice site (BPS-3'SS) distance and splice site strengths, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.


Assuntos
Processamento Alternativo , Atresia das Cóanas/patologia , Surdez/congênito , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Ribonucleoproteína Nuclear Pequena U5/deficiência , Spliceossomos/fisiologia , Apoptose , Diferenciação Celular , Técnicas de Reprogramação Celular , Atresia das Cóanas/genética , Células Clonais , Surdez/genética , Surdez/patologia , Transição Epitelial-Mesenquimal , Éxons/genética , Face/embriologia , Fácies , Feminino , Cabeça/embriologia , Cardiopatias Congênitas/genética , Humanos , Crista Neural/citologia , Regiões Promotoras Genéticas/genética , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Via de Sinalização Wnt
11.
Hum Mutat ; 41(8): 1372-1382, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32333448

RESUMO

Pathogenic variants in the core spliceosome U5 small nuclear ribonucleoprotein gene EFTUD2/SNU114 cause the craniofacial disorder mandibulofacial dysostosis Guion-Almeida type (MFDGA). MFDGA-associated variants in EFTUD2 comprise large deletions encompassing EFTUD2, intragenic deletions and single nucleotide truncating or missense variants. These variants are predicted to result in haploinsufficiency by loss-of-function of the variant allele. While the contribution of deletions within EFTUD2 to allele loss-of-function are self-evident, the mechanisms by which missense variants are disease-causing have not been characterized functionally. Combining bioinformatics software prediction, yeast functional growth assays, and a minigene (MG) splicing assay, we have characterized how MFDGA missense variants result in EFTUD2 loss-of-function. Only four of 19 assessed missense variants cause EFTUD2 loss-of-function through altered protein function when modeled in yeast. Of the remaining 15 missense variants, five altered the normal splicing pattern of EFTUD2 pre-messenger RNA predominantly through exon skipping or cryptic splice site activation, leading to the introduction of a premature termination codon. Comparison of bioinformatic predictors for each missense variant revealed a disparity amongst different software packages and, in many cases, an inability to correctly predict changes in splicing subsequently determined by MG interrogation. This study highlights the need for laboratory-based validation of bioinformatic predictions for EFTUD2 missense variants.


Assuntos
Deficiência Intelectual/genética , Disostose Mandibulofacial/genética , Microcefalia/genética , Fatores de Alongamento de Peptídeos/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética , Biologia Computacional , Éxons , Haploinsuficiência , Humanos , Mutação de Sentido Incorreto , Spliceossomos/genética
12.
Methods Mol Biol ; 2049: 131-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602609

RESUMO

Splicing of pre-messenger RNA (pre-mRNA) transcripts is a fundamental process in all eukaryotes that provides a mechanism of increasing the proteomic diversity within a cell that can be tightly regulated in a dynamic manner. While constitutive and alternative splicing are necessary for the correct development and regulation of cells/organisms, aberrant splicing is now associated with an increasingly varied number of human diseases, such as neurological and developmental diseases, and cancer. Studies of splicing mechanisms and regulation are often achieved in nonhuman model organisms such as yeast. Yeasts possess homologs to many of the core spliceosome components of higher organisms, including humans, and as such yeast species are now a well-established model organism for understanding how differential splicing of transcripts can alter the phenotype of a cell or organism. Here we describe methods to investigate pre-mRNA splicing in yeast cells using modern RNA-Seq technology and bioinformatics software. Details of traditional validation methods are also described.


Assuntos
Splicing de RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Animais , Humanos , Precursores de RNA/genética
13.
Clin Genet ; 96(6): 515-520, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441039

RESUMO

CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.


Assuntos
Mutação de Sentido Incorreto/genética , Receptor Muscarínico M3/genética , Doenças da Bexiga Urinária/genética , Sequência de Bases , Família , Feminino , Homozigoto , Humanos , Malásia , Masculino
14.
Hum Mol Genet ; 28(22): 3704-3723, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304552

RESUMO

The craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.


Assuntos
Disostose Mandibulofacial/genética , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Sistemas CRISPR-Cas , Proliferação de Células/genética , Anormalidades Craniofaciais/genética , Estresse do Retículo Endoplasmático/genética , Éxons , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Haploinsuficiência/genética , Humanos , Íntrons , Mutação , Fatores de Alongamento de Peptídeos/metabolismo , Fenótipo , Precursores de RNA/metabolismo , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de RNA/métodos , Spliceossomos/genética
15.
Immun Inflamm Dis ; 4(1): 35-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27042300

RESUMO

Responses of human neutrophils to TNF-α are complex and multifactorial. Exposure of human neutrophils to TNF-α in vitro primes the respiratory burst, delays apoptosis and induces the expression of several genes including chemokines, and TNF-α itself. This study aimed to determine the impact of TNF-α exposure on the expression of neutrophil genes and proteins that regulate apoptosis. Quantitative PCR and RNA-Seq, identified changes in expression of several apoptosis regulating genes in response to TNF-α exposure. Up-regulated genes included TNF-α itself, and several anti-apoptotic genes, including BCL2A1, CFLAR (cFLIP) and TNFAIP3, whose mRNA levels increased above control values by between 4-20 fold (n = 3, P < 0.05). In contrast, the expression of pro-apoptotic genes, including CASP8, FADD and TNFRSF1A and TNFRSF1B, were significantly down-regulated following TNF-α treatment. These changes in mRNA levels were paralleled by decreases in protein levels of caspases 8 and 10, TRADD, FADD, TNFRSF1A and TNFRSF1B, and increased cFLIP protein levels, as detected by western blotting. These data indicate that when neutrophils are triggered by TNF-α exposure, they undergo molecular changes in transcriptional expression to up-regulate expression of specific anti-apoptotic proteins and concomitantly decrease expression of specific proteins involved in death receptor signaling which will alter their function in TNF-α rich environments.

16.
PLoS One ; 10(9): e0138982, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401909

RESUMO

Protocols for the isolation of neutrophils from whole blood often result in neutrophil preparations containing low numbers (~5%) of contaminating leukocytes, and it is possible that these contaminating cells contribute to highly sensitive assays that measure neutrophil gene expression (e.g. qPCR). We investigated the contribution of contaminating leukocytes on the transcriptome profile of human neutrophils following stimulation with inflammatory cytokines (GM-CSF, TNFα), using RNA-Seq. Neutrophils were isolated using Polymorphprep or the StemCell untouched neutrophil isolation kit (negative selection of "highly pure" neutrophils). The level of contamination was assessed by morphology and flow cytometry. The major source of contamination in Polymorphprep neutrophil preparations was from eosinophils and was highly donor dependent. Contaminating cells were largely, but not completely, absent in neutrophil suspensions prepared using negative selection, but the overall yield of neutrophils was decreased by around 50%. RNA-seq analysis identified only 25 genes that were significantly differentially-expressed between Polymorphprep and negatively-selected neutrophils across all three treatment groups (untreated, GM-CSF, TNFα). The expression levels of 34 cytokines/chemokines both before and after GM-CSF or TNFα treatment were not significantly different between neutrophil isolation methods and therefore not affected by contributions from non-neutrophil cell types. This work demonstrates that low numbers (<5%) of contaminating leukocytes in neutrophil preparations contribute very little to the overall gene expression profile of cytokine-stimulated neutrophils, and that protocols for the isolation of highly pure neutrophils result in significantly lower yields of cells which may hinder investigations where large numbers of cells are required or where volumes of blood are limited.


Assuntos
Separação Celular/métodos , Neutrófilos/metabolismo , Transcriptoma/genética , Adulto , Centrifugação com Gradiente de Concentração , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenômenos Magnéticos , Microesferas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Carbohydr Polym ; 117: 400-407, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498652

RESUMO

An attractive strategy for ameliorating symptoms arising from the multi-faceted processes of excessive and/or continual inflammation would be to identify compounds able to interfere with multiple effectors of inflammation. The well-tolerated pharmaceutical, heparin, is capable of acting through several proteins in the inflammatory cascade, but its use is prevented by strong anticoagulant activity. Derivatives of heparin involving the periodate cleavage of 2,3 vicinal diols in non-sulfated uronate residues (glycol-split) and replacement of N-sulphamido- with N-acetamido- groups in glucosamine residues, capable of inhibiting neutrophil elastase activity in vitro, while exhibiting attenuated anticoagulant properties, have been identified and characterised. These also interact with two other important modulators of the inflammatory response, IL-8 and TNF-alpha. It is therefore feasible in principle to modulate several activities, while minimising anticoagulant side effects, providing a platform from which improved anti-inflammatory agents might be developed.


Assuntos
Anticoagulantes/farmacologia , Heparina/análogos & derivados , Heparina/farmacologia , Inflamação/tratamento farmacológico , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Anticoagulantes/síntese química , Anticoagulantes/química , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Heparina/síntese química , Heparina/química , Humanos , Inflamação/metabolismo , Interleucina-8/análise , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/síntese química , Proteínas Secretadas Inibidoras de Proteinases/química , Relação Estrutura-Atividade
18.
Rheumatology (Oxford) ; 54(1): 188-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25125592

RESUMO

OBJECTIVE: The aim of this study was to use whole transcriptome sequencing (RNA-Seq) of RA neutrophils to identify pre-therapy gene expression signatures that correlate with disease activity or response to TNF inhibitor (TNFi) therapy. METHODS: Neutrophils were isolated from the venous blood of RA patients (n = 20) pre-TNFi therapy and from healthy controls (n = 6). RNA was poly(A) selected and sequenced on the Illumina HiSeq 2000 platform. Reads were mapped to the human genome (hg19) using TopHat and differential expression analysis was carried out using edgeR (5% false discovery rate). Signalling pathway analysis was carried out using Ingenuity Pathway Analysis (IPA) software. IFN signalling was confirmed by western blotting for phosphorylated signal transducer and activator of transcription (STAT) proteins. Response to TNFi was measured at 12 weeks using change in the 28-item DAS (DAS28). RESULTS: Pathway analysis with IPA predicted activation of IFN signalling in RA neutrophils, identifying 178 IFN-response genes regulated by IFN-α, IFN-ß or IFN-γ (P < 0.01). IPA also predicted activation of STAT1, STAT2 and STAT3 transcription factors in RA neutrophils (P < 0.01), which was confirmed by western blotting. Expression of IFN-response genes was heterogeneous and patients could be categorized as IFN-high or IFN-low. Patients in the IFN-high group achieved a better response to TNFi therapy [ΔDAS28, P = 0.05, odds ratio (OR) 1.4 (95% CI 1.005, 1.950)] than patients in the IFN-low group. The level of expression of IFN-response genes (IFN score) predicted a good response [European League Against Rheumatism (EULAR) criteria] to TNFi using receiver operating characteristic curve analysis (area under the curve 0.76). CONCLUSION: IFN-response genes are significantly up-regulated in RA neutrophils compared with healthy controls. Higher IFN-response gene expression in RA neutrophils correlates with a good response to TNFi therapy.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Perfilação da Expressão Gênica , Interferons/genética , Interferons/metabolismo , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idoso , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Fatores de Transcrição STAT/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/genética , Resultado do Tratamento
19.
Immunol Lett ; 162(2 Pt B): 194-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25445614

RESUMO

We identified IL-17A-positive neutrophils in Wolbachia-positive Onchocerca volvulus nodules using an antibody that has previously reported IL-17A-positive neutrophils in several inflammatory conditions. However, we could not detect IL-17A using a range of alternative assays. Our data question the IL-17A antibody specificity and the ability of human neutrophils to express IL-17A.


Assuntos
Anticorpos Anti-Helmínticos/química , Interleucina-17/imunologia , Neutrófilos/imunologia , Onchocerca volvulus/imunologia , Oncocercose/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Imuno-Histoquímica/métodos , Masculino , Neutrófilos/patologia , Oncocercose/tratamento farmacológico , Oncocercose/patologia
20.
PLoS One ; 8(3): e58598, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554905

RESUMO

Neutrophils are central to the pathology of inflammatory diseases, where they can damage host tissue through release of reactive oxygen metabolites and proteases, and drive inflammation via secretion of cytokines and chemokines. Many cytokines, such as those generated during inflammation, can induce a similar "primed" phenotype in neutrophils, but it is unknown if different cytokines utilise common or cytokine-specific pathways to induce these functional changes. Here, we describe the transcriptomic changes induced in control human neutrophils during priming in vitro with pro-inflammatory cytokines (TNF-α and GM-CSF) using RNA-seq. Priming led to the rapid expression of a common set of transcripts for cytokines, chemokines and cell surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1). However, 580 genes were differentially regulated by TNF-α and GM-CSF treatment, and of these 58 were directly implicated in the control of apoptosis. While these two cytokines both delayed apoptosis, they induced changes in expression of different pro- and anti-apoptotic genes. Bioinformatics analysis predicted that these genes were regulated via differential activation of transcription factors by TNF-α and GM-CSF and these predictions were confirmed using functional assays: inhibition of NF-κB signalling abrogated the protective effect of TNF-α (but not that of GM-CSF) on neutrophil apoptosis, whereas inhibition of JAK/STAT signalling abrogated the anti-apoptotic effect of GM-CSF, but not that of TNF-α (p<0.05). These data provide the first characterisation of the human neutrophil transcriptome following GM-CSF and TNF-α priming, and demonstrate the utility of this approach to define functional changes in neutrophils following cytokine exposure. This may provide an important, new approach to define the molecular properties of neutrophils after in vivo activation during inflammation.


Assuntos
Citocinas/biossíntese , Molécula 1 de Adesão Intercelular/biossíntese , Ativação de Neutrófilo , Neutrófilos/metabolismo , Transdução de Sinais , Citocinas/imunologia , Citocinas/farmacologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Molécula 1 de Adesão Intercelular/imunologia , Janus Quinases/imunologia , Janus Quinases/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA