Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4280, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855396

RESUMO

The demand for xylenes is projected to increase over the coming decades. The separation of xylene isomers, particularly p- and m-xylenes, is vital for the production of numerous polymers and materials. However, current state-of-the-art separation is based upon fractional crystallisation at 220 K which is highly energy intensive. Here, we report the discrimination of xylene isomers via refinement of the pore size in a series of porous metal-organic frameworks, MFM-300, at sub-angstrom precision leading to the optimal kinetic separation of all three xylene isomers at room temperature. The exceptional performance of MFM-300 for xylene separation is confirmed by dynamic ternary breakthrough experiments. In-depth structural and vibrational investigations using synchrotron X-ray diffraction and terahertz spectroscopy define the underlying host-guest interactions that give rise to the observed selectivity (p-xylene < o-xylene < m-xylene) and separation factors of 4.6-18 for p- and m-xylenes.

2.
Nat Mater ; 17(8): 691-696, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29891889

RESUMO

Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental1,2 and health problems3,4. We report reversible adsorption of NO2 in a robust metal-organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g-1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer-dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies.

3.
Chemistry ; 21(45): 16027-34, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26406996

RESUMO

We report two isoreticular 3D peptide-based porous frameworks formed by coordination of the tripeptides Gly-L-His-Gly and Gly-L-His-L-Lys to Cu(II) which display sponge-like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2 O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbone, can be post-synthetically modified to produce urea-functionalised networks by following methodologies typically used for metal-organic frameworks built from more rigid "classical" linkers.


Assuntos
Cobre/química , Metaloproteínas/química , Oligopeptídeos/química , Peptídeos/química , Adsorção , Metaloproteínas/metabolismo , Estrutura Molecular , Oligopeptídeos/metabolismo , Peptídeos/metabolismo , Porosidade , Ureia/química
4.
J Am Chem Soc ; 137(17): 5706-19, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25806952

RESUMO

Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources.

5.
Nat Mater ; 13(10): 954-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038731

RESUMO

The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

6.
Chem Commun (Camb) ; 49(82): 9410-2, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24013272

RESUMO

A chemoselective spectroscopic method for measuring CO2 sorption isotherms at pressures up to 14 MPa (140 bar) is validated against manometric measurements and molecular simulations, giving insights into the preferred sorption sites in various crystalline porous organic cages.


Assuntos
Dióxido de Carbono/química , Técnicas de Química Analítica/métodos , Manometria , Análise Espectral/normas , Adsorção , Ciclização , Iminas/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Am Chem Soc ; 135(13): 4954-7, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23485063

RESUMO

Porous NOTT-202a shows exceptionally high uptake of SO2, 13.6 mmol g(-1) (87.0 wt %) at 268 K and 1.0 bar, representing the highest value reported to date for a framework material. NOTT-202a undergoes a distinct irreversible framework phase transition upon SO2 uptake at 268-283 K to give NOTT-202b which has enhanced stability due to the formation of strong π···π interactions between interpenetrated networks.

8.
J Am Chem Soc ; 134(50): 20466-78, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23121122

RESUMO

The reaction between Zn and a pyrene-based ligand decorated with benzoate fragments (H(4)TBAPy) yields a 2D layered porous network with the metal coordination based on a paddlewheel motif. Upon desolvation, the structure undergoes a significant and reversible structural adjustment with a corresponding reduction in crystallinity. The combination of computationally assisted structure determination and experimental data analysis of the desolvated phase revealed a structural change in the metal coordination geometry from square-pyramidal to tetrahedral. Simulations of desolvation showed that the local distortion of the ligand geometry followed by the rotation and displacement of the pyrene core permits the breakup of the metal-paddlewheel motifs and the formation of 1D Zn-O chains that cross-link adjacent layers, resulting in a dimensionality change from the 2D layered structure to a 3D structure. Constrained Rietveld refinement of the powder X-ray diffraction pattern of the desolvated phase and the use of other analytical techniques such as porosity measurements, (13)C CP MAS NMR spectroscopy, and fluorescence spectroscopy strongly supported the observed structural transformation. The 3D network is stable up to 425 °C and is permanently porous to CO(2) with an apparent BET surface area of 523(8) m(2)/g (p/p° = 0.02-0.22). Because of the hydrophobic nature, size, and shape of the pores of the 3D framework, the adsorption behavior of the structure toward p-xylene and m-xylene was studied, and the results indicated that the shape of the isotherm and the kinetics of the adsorption process are determined mainly by the shape of the xylene isomers, with each xylene isomer interacting with the host framework in a different manner.


Assuntos
Compostos Orgânicos/química , Zinco/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência
9.
Nat Mater ; 11(8): 710-6, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660661

RESUMO

The selective capture of carbon dioxide in porous materials has potential for the storage and purification of fuel and flue gases. However, adsorption capacities under dynamic conditions are often insufficient for practical applications, and strategies to enhance CO(2)-host selectivity are required. The unique partially interpenetrated metal-organic framework NOTT-202 represents a new class of dynamic material that undergoes pronounced framework phase transition on desolvation. We report temperature-dependent adsorption/desorption hysteresis in desolvated NOTT-202a that responds selectively to CO(2). The CO(2) isotherm shows three steps in the adsorption profile at 195 K, and stepwise filling of pores generated within the observed partially interpenetrated structure has been modelled by grand canonical Monte Carlo simulations. Adsorption of N(2), CH(4), O(2), Ar and H(2) exhibits reversible isotherms without hysteresis under the same conditions, and this allows capture of gases at high pressure, but selectively leaves CO(2) trapped in the nanopores at low pressure.

10.
J Am Chem Soc ; 134(20): 8703-10, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22545712

RESUMO

Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C(2)H(2)/C(2)H(4) separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C(2)H(2)/C(2)H(4) has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.


Assuntos
Álcoois Benzílicos/isolamento & purificação , Butanóis/isolamento & purificação , Compostos Organometálicos/química , Pentanóis/isolamento & purificação , Adsorção , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Compostos Organometálicos/síntese química , Porosidade , Estereoisomerismo
11.
Inorg Chem ; 51(9): 4947-53, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22524410

RESUMO

A three-dimensional triply interpenetrated mixed metal-organic framework, Zn(2)(BBA)(2)(CuPyen)·G(x) (M'MOF-20; BBA = biphenyl-4,4'-dicarboxylate; G = guest solvent molecules), of primitive cubic net was obtained through the solvothermal reaction of Zn(NO(3))(2), biphenyl-4,4'-dicarboxylic acid, and the salen precursor Cu(PyenH(2))(NO(3))(2) by a metallo-ligand approach. The triple framework interpenetration has stabilized the framework in which the activated M'MOF-20a displays type-I N(2) gas sorption behavior with a Langmuir surface area of 62 m(2) g(-1). The narrow pores of about 3.9 Å and the open metal sites on the pore surfaces within M'MOF-20a collaboratively induce its highly selective C(2)H(2)/CH(4) and CO(2)/CH(4) gas separation at ambient temperature.

12.
Nat Chem ; 3(4): 304-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21430690

RESUMO

Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Compostos Organometálicos/química , Adsorção , Cobre/química , Esterificação , Gases/química , Cinética , Espectroscopia de Ressonância Magnética , Metanol/química , Conformação Molecular , Estrutura Molecular , Nitratos/química , Compostos Organometálicos/síntese química , Temperatura , Termodinâmica , Termogravimetria , Ácidos Tricarboxílicos/química , Água/química , Difração de Raios X
13.
Nat Commun ; 2: 204, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21343922

RESUMO

Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C(2)H(2)/C(2)H(4) have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C(2)H(2) and C(2)H(4). The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2)H(4).


Assuntos
Acetileno/química , Fracionamento Químico/métodos , Etilenos/química , Filtros Microporos , Modelos Moleculares , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Adsorção , Cristalização , Estrutura Molecular , Temperatura
14.
Dalton Trans ; (9): 1487-505, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19421589

RESUMO

Hydrogen adsorption on porous materials is one of the possible methods proposed for hydrogen storage for transport applications. High pressure experimental studies of a wide range of porous materials have obtained maximum hydrogen excess capacities of 6-8 wt% at 77 K for metal-organic frameworks (MOFs) and porous carbon materials. Grand canonical Monte Carlo (GCMC) simulation studies indicate that higher hydrogen capacities are possible for covalent organic frameworks (COFs). Currently, the maximum isosteric enthalpies of adsorption of approximately 13 kJ mol(-1) at 77 K have been observed experimentally for metal-organic framework materials and this is higher than for COFs, where the maximum predicted from GCMC simulations is approximately 8 kJ mol(-1). Metal-organic framework materials have structural diversity and scope for modification of surface chemistry to enhance hydrogen surface interactions. The synthesis of MOFs with stronger H(2)-surface interactions to give similar hydrogen capacities at much higher temperatures than 77 K is required and eventually, materials that have these high capacities at ambient temperatures with rapid adsorption/desorption characteristics are necessary for applications as hydrogen storage materials for transport applications. The current methods envisaged for increasing adsorption at higher temperatures involve modification of the surface chemistry, in particular, the inclusion of open metal centres to increase hydrogen surface site interactions, and utilisation of the framework flexibility are discussed.

15.
J Am Chem Soc ; 131(6): 2159-71, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19159298

RESUMO

A series of isostructural metal-organic framework polymers of composition [Cu2(L)(H2O)2] (L= tetracarboxylate ligands), denoted NOTT-nnn, has been synthesized and characterized. Single crystal X-ray structures confirm the complexes to contain binuclear Cu(II) paddlewheel nodes each bridged by four carboxylate centers to give a NbO-type network of 64.82 topology. These complexes are activated by solvent exchange with acetone coupled to heating cycles under vacuum to afford the desolvated porous materials NOTT-100 to NOTT-109. These incorporate a vacant coordination site at each Cu(II) center and have large pore volumes that contribute to the observed high H2 adsorption. Indeed, NOTT-103 at 77 K and 60 bar shows a very high total H2 adsorption of 77.8 mg g(-)- equivalent to 7.78 wt% [wt% = (weight of adsorbed H2)/(weight of host material)] or 7.22 wt% [wt% = 100(weight of adsorbed H2)/(weight of host material + weight of adsorbed H2)]. Neutron powder diffraction studies on NOTT-101 reveal three adsorption sites for this material: at the exposed Cu(II) coordination site, at the pocket formed by three {Cu2} paddle wheels, and at the cusp of three phenyl rings. Systematic virial analysis of the H2 isotherms suggests that the H2 binding energies at these sites are very similar and the differences are smaller than 1.0 kJ mol-1, although the adsorption enthalpies for H2 at the exposed Cu(II) site are significantly affected by pore metrics. Introducing methyl groups or using kinked ligands to create smaller pores can enhance the isosteric heat of adsorption and improve H2 adsorption. However, although increasing the overlap of potential energy fields of pore walls increases the heat of H2 adsorption at low pressure, it may be detrimental to the overall adsorption capacity by reducing the pore volume.


Assuntos
Cobre/química , Hidrogênio/química , Compostos Organometálicos/química , Adsorção , Ácidos Carboxílicos/química , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Ligantes , Modelos Moleculares , Difração de Nêutrons , Compostos Organometálicos/síntese química
16.
Nat Chem ; 1(4): 289-94, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21495253

RESUMO

Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of 'breathing' MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu2(OH)(C8H3O7S)(H2O)2H2O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.


Assuntos
Metais/química , Compostos Orgânicos/química , Compostos Organometálicos/química , Adsorção , Cobre/química , Gases , Compostos Organometálicos/síntese química , Ácidos Ftálicos/química , Porosidade , Pressão , Compostos de Enxofre/química , Água/química , Difração de Raios X
17.
Chem Commun (Camb) ; (46): 6108-10, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19082088

RESUMO

H(2) adsorption in (Me(2)NH(2))[In(L)] is enhanced by exchange of Me(2)NH(2)(+) for Li(+) cations; the Li(+)-exchanged material displays a lower isosteric heat for H(2) adsorption than the parent material, indicating that the increase in H(2) capacity is due to an increase in the accessible pore volume on cation exchange, while the lower adsorption enthalpy is consistent with increased pore size.

18.
J Am Chem Soc ; 130(20): 6411-23, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18435535

RESUMO

A rational strategy has been used to immobilize open metal sites in ultramicroporosity for stronger binding of multiple H 2 molecules per unsaturated metal site for H 2 storage applications. The synthesis and structure of a mixed zinc/copper metal-organic framework material Zn 3(BDC) 3[Cu(Pyen)] .(DMF) 5(H 2O) 5 (H 2BDC = 1,4 benzenedicarboxylic acid and PyenH 2 = 5-methyl-4-oxo-1,4-dihydro-pyridine-3-carbaldehyde) is reported. Desolvation provides a bimodal porous structure Zn 3(BDC) 3[Cu(Pyen)] (M'MOF 1) with narrow porosity (<0.56 nm) and an array of pores in the bc crystallographic plane where the adsorbate-adsorbent interactions are maximized by both the presence of open copper centers and overlap of the potential energy fields from pore walls. The H 2 and D 2 adsorption isotherms for M'MOF 1 at 77.3 and 87.3 K were reversible with virtually no hysteresis. Methods for determination of the isosteric enthalpies of H 2 and D 2 adsorption were compared. A virial model gave the best agreement (average deviation <1 standard deviation) with the isotherm data. This was used in conjunction with the van't Hoff isochore giving isosteric enthalpies at zero surface coverage of 12.29 +/- 0.53 and 12.44 +/- 0.50 kJ mol (-1) for H 2 and D 2 adsorption, respectively. This is the highest value so far observed for hydrogen adsorption on a porous material. The enthalpy of adsorption, decreases with increasing amount adsorbed to 9.5 kJ mol (-1) at approximately 1.9 mmol g (-1) (2 H 2 or D 2 molecules per Cu corresponding to adsorption on both sides of planar Cu open centers) and is virtually unchanged in the range 1.9-3.6 mmol g (-1). Virial analysis of isotherms at 87.3 K is also consistent with two H 2 or D 2 molecules being bound to each open Cu center. The adsorption kinetics follow a double exponential model, corresponding to diffusion along two types of pores, a slow component with high activation energy (13.35 +/- 0.59 kJ mol (-1)) for the narrow pores and a faster component with low activation energy (8.56 +/- 0.41 kJ mol (-1)). The D 2 adsorption kinetic constants for both components were significantly faster than the corresponding H 2 kinetics for specific pressure increments and had slightly lower activation energies than the corresponding values for H 2 adsorption. The kD 2/ kH 2 ratio for the slow component was 1.62 +/- 0.07, while the fast component was 1.38 +/- 0.04 at 77.3 K, and the corresponding ratios were smaller at 87.3 K. These observations of kinetic isotope quantum molecular sieving in porous materials are due to the larger zero-point energy for the lighter H 2, resulting in slower adsorption kinetics compared with the heavier D 2. The results show that a combination of open metal centers and confinement in ultramicroporosity leads to a high enthalpy for H 2 adsorption over a wide range of surface coverage and quantum effects influence diffusion of H 2 and D 2 in pores in M'MOF 1.

19.
J Am Chem Soc ; 129(5): 1203-9, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17263402

RESUMO

Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.


Assuntos
Biotecnologia , Hidrogênio/química , Manufaturas , Metais/química , Óxido Nítrico/química , Adsorção , Luminescência , Agregação Plaquetária , Porosidade , Espectrofotometria Infravermelho , Estresse Mecânico , Propriedades de Superfície , Temperatura , Termogravimetria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA