Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Immunol Res ; 11(6): 810-829, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37139603

RESUMO

There are no targeted therapies for patients with triple-negative breast cancer (TNBC). TNBC is enriched in breast cancer stem cells (BCSC), which play a key role in metastasis, chemoresistance, relapse, and mortality. γδ T cells hold great potential in immunotherapy against cancer and might provide an approach to therapeutically target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor-sensing mechanisms, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. Herein, we show that patient-derived triple-negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γδ T-cell immunotherapy. We unraveled concerted differentiation and immune escape mechanisms: xenografted BCSCs lost stemness, expression of γδ T-cell ligands, adhesion molecules, and pAgs, thereby evading immune recognition by γδ T cells. Indeed, neither promigratory engineered γδ T cells, nor anti-PD-1 checkpoint blockade, significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γδ T cells and could be pharmacologically reverted by zoledronate or IFNα treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/metabolismo , Monitorização Imunológica , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas
2.
Cell Mol Life Sci ; 79(10): 513, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097202

RESUMO

The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins  that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.


Assuntos
Linfoma de Burkitt , Neoplasias Colorretais , Receptores de Antígenos Quiméricos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/terapia , Humanos , Lectinas/metabolismo , Polissacarídeos/metabolismo , Linfócitos T
3.
Small ; 18(6): e2105157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859962

RESUMO

Controlling the time and dose of nanoparticulate drug delivery by administration of small molecule drugs holds promise for efficient and safer therapies. This study describes a versatile approach of exploiting antibody-ligand interactions for the design of small molecule-responsive nanocarrier and nanocomposite systems. For this purpose, antibody fragments (scFvs) specific for two distinct small molecule ligands are designed. Subsequently, the surface of nanoparticles (liposomes or adeno-associated viral vectors, AAVs) is modified with these ligands, serving as anchor points for scFv binding. By modifying the scFvs with polymer tails, they can act as a non-covalently bound shielding layer, which is recruited to the anchor points on the nanoparticle surface and prevents interactions with cultured mammalian cells. Administration of an excess of the respective ligand triggers competitive displacement of the shielding layer from the nanoparticle surface and restores nanoparticle-cell interactions. The same principle is applied for developing hydrogel depots that can release integrated AAVs or liposomes in response to small molecule ligands. The liberated nanoparticles subsequently deliver their cargoes to cells. In summary, the utilization of different antibody-ligand interactions, different nanoparticles, and different release systems validates the versatility of the design concept described herein.


Assuntos
Lipossomos , Nanopartículas , Animais , Vetores Genéticos , Ligantes , Mamíferos , Nanopartículas/química , Polímeros
5.
Proc Natl Acad Sci U S A ; 116(41): 20700-20706, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31527267

RESUMO

Microbial invasion into the intestinal mucosa after allogeneic hematopoietic cell transplantation (allo-HCT) triggers neutrophil activation and requires antibiotic interventions to prevent sepsis. However, antibiotics lead to a loss of microbiota diversity, which is connected to a higher incidence of acute graft-versus-host disease (aGVHD). Antimicrobial therapies that eliminate invading bacteria and reduce neutrophil-mediated damage without reducing the diversity of the microbiota are therefore highly desirable. A potential solution would be the use of antimicrobial antibodies that target invading pathogens, ultimately leading to their elimination by innate immune cells. In a mouse model of aGVHD, we investigated the potency of active and passive immunization against the conserved microbial surface polysaccharide poly-N-acetylglucosamine (PNAG) that is expressed on numerous pathogens. Treatment with monoclonal or polyclonal antibodies to PNAG (anti-PNAG) or vaccination against PNAG reduced aGVHD-related mortality. Anti-PNAG treatment did not change the intestinal microbial diversity as determined by 16S ribosomal DNA sequencing. Anti-PNAG treatment reduced myeloperoxidase activation and proliferation of neutrophil granulocytes (neutrophils) in the ileum of mice developing GVHD. In vitro, anti-PNAG treatment showed high antimicrobial activity. The functional role of neutrophils was confirmed by using neutrophil-deficient LysMcreMcl1fl/fl mice that had no survival advantage under anti-PNAG treatment. In summary, the control of invading bacteria by anti-PNAG treatment could be a novel approach to reduce the uncontrolled neutrophil activation that promotes early GVHD and opens a new avenue to interfere with aGVHD without affecting commensal intestinal microbial diversity.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Bactérias/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Imunização Passiva/métodos , Intestinos/imunologia , Ativação de Neutrófilo/imunologia , Polissacarídeos Bacterianos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Polissacarídeos Bacterianos/imunologia
6.
Adv Mater ; 31(12): e1806727, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30687975

RESUMO

Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31921819

RESUMO

The exploitation of nanosized materials for the delivery of therapeutic agents is already a clinical reality and still holds unrealized potential for the treatment of a variety of diseases. This review discusses physiological barriers a nanocarrier must overcome in order to reach its target, with an emphasis on cancer nanomedicine. Stages of delivery include residence in the blood stream, passive accumulation by virtue of the enhanced permeability and retention effect, diffusion within the tumor lesion, cellular uptake, and arrival at the site of action. We also briefly outline strategies for engineering nanoparticles to more efficiently overcome these challenges: Increasing circulation half-life by shielding with hydrophilic polymers, such as PEG, the limitations of PEG and potential alternatives, targeting and controlled activation approaches. Future developments in these areas will allow us to harness the full potential of nanomedicine.

8.
Acta Biomater ; 79: 276-282, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165200

RESUMO

Molecular traps can control activity and abundance of many biological factors. Here, we report the development of a generic opto-trap to reversibly bind and release biomolecules with high spatiotemporal control by illumination with non-invasive and cell-compatible red and far-red light. We use the Arapidopsis thaliana photoreceptor phytochrome B to regulate the release of diverse proteins from a variety of material scaffolds. Fusion of a short 100 amino acids "PIF-tag", derived from the phytochrome interacting factor 6, renders arbitrary molecules opto-trap-compatible. Reversible opto-trapping of target molecules enables novel possibilities for future developments in diagnostics, therapeutics, and basic research. STATEMENT OF SIGNIFICANCE: The investigation of cellular signaling events or the development of complex therapeutics and integrative diagnostic devices requires the deliberate control of biomolecule abundance and activity. During recent years, the use of natural photoreceptors within cells leveraged the control of diverse cellular events, benefiting from the superior spatial and temporal control characteristics of light as compared to conventional chemical stimuli. Concurrently, biological switches entailing intrinsic compatibility toward biological environments increasingly found application in biohybrid materials. We employ the plant red/far-red photoreceptor phytochrome B, which reversibly interacts with its phytochrome interacting factors (PIFs), for developing a generic opto-trap. This platform allows the use of red and far-red light to spatiotemporally control binding and release of arbitrary PIF-fused biomolecules from various material scaffolds.


Assuntos
Óptica e Fotônica/métodos , Fitocromo B/metabolismo , Anticorpos/metabolismo , Arabidopsis , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular
9.
Cell Death Dis ; 9(5): 529, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743550

RESUMO

Inhibitor of Apoptosis Proteins act as E3 ubiquitin ligases to regulate NF-κB signalling from multiple pattern recognition receptors including NOD2, as well as TNF Receptor Superfamily members. Loss of XIAP in humans causes X-linked Lymphoproliferative disease type 2 (XLP-2) and is often associated with Crohn's disease. Crohn's disease is also caused by mutations in the gene encoding NOD2 but the mechanisms behind Crohn's disease development in XIAP and NOD2 deficient-patients are still unknown. Numerous other mutations causing Crohn's Disease occur in genes controlling various aspects of autophagy, suggesting a strong involvement of autophagy in preventing Crohn's disease. Here we show that the IAP proteins cIAP2 and XIAP are required for efficient fusion of lysosomes with autophagosomes. IAP inhibition or loss of both cIAP2 and XIAP resulted in a strong blockage in autophagic flux and mitophagy, suggesting that XIAP deficiency may also drive Crohn's Disease due to defects in autophagy.


Assuntos
Autofagossomos , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Doença de Crohn/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Mitofagia , Animais , Proteína 3 com Repetições IAP de Baculovírus/genética , Doença de Crohn/genética , Doença de Crohn/patologia , Proteínas Inibidoras de Apoptose/genética , Lisossomos/genética , Camundongos
10.
Blood ; 131(16): 1858-1869, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29463561

RESUMO

Conditioning-induced damage of the intestinal tract plays a critical role during the onset of acute graft-versus-host disease (GVHD). Therapeutic interference with these early events of GVHD is difficult, and currently used immunosuppressive drugs mainly target donor T cells. However, not donor T cells but neutrophils reach the sites of tissue injury first, and therefore could be a potential target for GVHD prevention. A detailed analysis of neutrophil fate during acute GVHD and the effect on T cells is difficult because of the short lifespan of this cell type. By using a novel photoconverter reporter system, we show that neutrophils that had been photoconverted in the ileum postconditioning later migrated to mesenteric lymph nodes (mLN). This neutrophil migration was dependent on the intestinal microflora. In the mLN, neutrophils colocalized with T cells and presented antigen on major histocompatibility complex (MHC)-II, thereby affecting T cell expansion. Pharmacological JAK1/JAK2 inhibition reduced neutrophil influx into the mLN and MHC-II expression, thereby interfering with an early event in acute GVHD pathogenesis. In agreement with this finding, neutrophil depletion reduced acute GVHD. We conclude that neutrophils are attracted to the ileum, where the intestinal barrier is disrupted, and then migrate to the mLN, where they participate in alloantigen presentation. JAK1/JAK2-inhibition can interfere with this process, which provides a potential therapeutic strategy to prevent early events of tissue damage-related innate immune cell activation and, ultimately, GVHD.


Assuntos
Comunicação Celular/imunologia , Doença Enxerto-Hospedeiro/imunologia , Íleo/imunologia , Linfonodos/imunologia , Mesentério/imunologia , Neutrófilos/imunologia , Doença Aguda , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Íleo/patologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Janus Quinase 1/imunologia , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Linfonodos/patologia , Mesentério/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/patologia , Inibidores de Proteínas Quinases/farmacologia
11.
PLoS One ; 12(6): e0177920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591131

RESUMO

Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.


Assuntos
Células Dendríticas/ultraestrutura , Interações Hospedeiro-Patógeno , Vírus da Influenza A/ultraestrutura , Vírion/ultraestrutura , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Endossomos/virologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Antígenos HLA-DR/isolamento & purificação , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Proteínas de Membrana Lisossomal/isolamento & purificação , Microscopia , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Transporte Vesicular/isolamento & purificação , Proteínas do Core Viral/genética , Proteínas do Core Viral/isolamento & purificação , Vírion/genética , Vírion/patogenicidade , Replicação Viral/genética
12.
Nucleic Acids Res ; 44(D1): D509-14, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26615197

RESUMO

Over the last decades, the genus Streptomyces has stirred huge interest in the scientific community as a source of bioactive compounds. The majority of all known antibiotics is isolated from these bacterial strains, as well as a variety of other drugs such as antitumor agents, immunosuppressants and antifungals. To the best of our knowledge, StreptomeDB was the first database focusing on compounds produced by streptomycetes. The new version presented herein represents a major step forward: its content has been increased to over 4000 compounds and more than 2500 host organisms. In addition, we have extended the background information and included hundreds of new manually curated references to literature. The latest update features a unique scaffold-based navigation system, which enables the exploration of the chemical diversity of StreptomeDB on a structural basis. We have included a phylogenetic tree, based on 16S rRNA sequences, which comprises more than two-thirds of the included host organisms. It enables visualizing the frequency, appearance, and persistence of compounds and scaffolds in an evolutionary context. Additionally, we have included predicted MS- and NMR-spectra of thousands of compounds for assignment of experimental data. The database is freely accessible via http://www.pharmaceutical-bioinformatics.org/streptomedb.


Assuntos
Produtos Biológicos/química , Bases de Dados de Compostos Químicos , Streptomyces/química , Produtos Biológicos/metabolismo , Filogenia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA