RESUMO
Elongated akaganéite (ß-FeOOH) nanoparticles were prepared by a forced hydrolysis route using FeCl3·6H2O employing various urea concentrations.ß-FeOOH nanoparticles stabilized within the SiO2matrix were annealed at different temperatures, ranging from 500 °C to 1300 °C. It was observed thatß-FeOOH underwent a temperature-induced conversion toγ-Fe2O3and subsequently toϵ-Fe2O3. Due to theϵ-Fe2O3phase formation, the coercivity rapidly increased to 16 kOe for samples annealed at 900 °C and reached values up to 21.5 kOe when annealed at 1200 °C. At a higher temperature of 1300 °C, theϵ-Fe2O3phase transforms mainly into theα-Fe2O3phase, which causes the coercivity to rapidly drop to negligible values.
RESUMO
We have investigated the size dependent energy barrier regarding the transition between magnetic vortex and collinear states in dense arrays of magnetic cap structures hosting magnetic vortices. The cap structures were formed by the deposition of soft magnetic thin films on top of large arrays of densely packed polystyrene spheres. The energy barrier associated with the magnetic field assisted switching from a collinear magnetic state to a non-uniform vortex state (or vice versa) was tuned by tailoring the diameter and thickness of the soft magnetic caps. At a sufficient temperature, known as the bifurcation temperature, the thermal energy overcomes this energy barrier and magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In magnetic caps with a fixed thickness, the bifurcation temperature decreases with increasing cap diameter. On the other hand, for a fixed diameter, the bifurcation temperature increases with an increase in film thickness of the cap structure. This study demonstrates that the bifurcation temperature can be easily tailored by changing the magnetostatic energy contribution which in turn affects the energy barrier and thus the magnetic bistability.
RESUMO
Surface modification of superparamagnetic Fe3O4 nanoparticles using polymers (polyaniline/polypyrrole) was done by radio frequency (r.f.) plasma polymerization technique and characterized by XRD, TEM, TG/DTA and VSM. Surface-passivated Fe3O4 nanoparticles with polymers were having spherical/rod-shaped structures with superparamagnetic properties. Broad visible photoluminescence emission bands were observed at 445 and 580 nm for polyaniline-coated Fe3O4 and at 488 nm for polypyrrole-coated Fe3O4. These samples exhibit good fluorescence emissions with L929 cellular assay and were non-toxic. Magnetic hyperthermia response of Fe3O4 and polymer (polyaniline/polypyrrole)-coated Fe3O4 was evaluated and all the samples exhibit hyperthermia activity in the range of 42-45 °C. Specific loss power (SLP) values of polyaniline and polypyrrole-coated Fe3O4 nanoparticles (5 and 10 mg/ml) exhibit a controlled heat generation with an increase in the magnetic field.
Assuntos
Compostos de Anilina/química , Diagnóstico por Imagem/métodos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Polímeros/química , Pirróis/química , Compostos de Anilina/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/síntese química , Compostos Férricos/química , Compostos Férricos/efeitos da radiação , Humanos , Campos Magnéticos , Magnetismo/métodos , Nanopartículas de Magnetita/efeitos da radiação , Nanopartículas de Magnetita/uso terapêutico , Teste de Materiais , Gases em Plasma/química , Polímeros/efeitos da radiação , Pirróis/efeitos da radiação , Ondas de Rádio , Propriedades de Superfície/efeitos da radiação , Difração de Raios XRESUMO
Barium hexaferrite nanofluids based on five different solvents have been prepared by employing Pulsed Laser Ablation in Liquid (PLAL) at two different wavelengths of 532 nm and 1064 nm. They were then characterized using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), UV-Vis spectroscopy, and Vibrating Sample Magnetometry (VSM). The chemical states of the ablated nanoparticles were identified from XPS analysis and found to be matching with that of the target. The crystallinity of the nanoparticles were confirmed from high resolution TEM (HRTEM) images and SAED patterns. It is found that different liquid environments lead to the formation of barium ferrite nanoparticles with different particle diameters. The plausible mechanism involved in this process is discussed. This study can pave way for the synthesis of stable magnetic nanofluids of permanent magnets. Further, this technique could be utilized for tailoring the morphology of nanoparticles with a judicious choice of the solvents and other ablation parameters.
RESUMO
We report on the observation of double transition - a first order and a second order transition in Gd5Si2-xCoxGe2 with x = 0, 0.1, 0.2 and 0.4 with the appearance of short-range ferromagnetic correlations. The first order phase transition is due to a combined magnetostructural transition from monoclinic paramagnetic phase to orthorhombic ferromagnetic phase on cooling while the second order transition arises from an orthorhombic paramagnetic to ferromagnetic phase on cooling. Structural studies show that the substituted compounds crystallize in a combination of Gd5Si2Ge2 and Gd5Si4 phases. Low-temperature X-ray diffraction measurements confirm the complete transformation from monoclinic to orthorhombic phase. DC magnetization measurements reveal an anomalous low field magnetic behaviour indicating a Griffiths-like phase. This unusual behaviour is attributed to the local disorder within the crystallographic structure indicating the presence of short-range magnetic correlations and ferromagnetic clustering, which is stabilized and enhanced by competing intra-layer and inter-layer magnetic interactions. The magnetostructural transition results in entropy changes (-ΔSM) of 9 J kg-1 K-1 at 260 K for x = 0.1, 8.5 J kg-1 K-1 at 245 K for x = 0.2 and 4.2 J kg-1 K-1 at 210 K for x = 0.4 for a field change of 50 kOe. Co substitution induces compelling crystallographic and magnetoresponsive effects in the Gd-Si-Ge system, which could be useful for potential and smart applications such as solid-state magnetic refrigeration and sensitive magnetic switching from paramagnetic to ferromagnetic state. Universal curve analysis has been carried out on the substituted samples to study the order of the magnetic transition.
RESUMO
Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO(3)) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO(3) concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory.
RESUMO
Composite Fe(3)O(4)-SiO(2) materials were prepared by the sol-gel method with tetraethoxysilane and aqueous-based Fe(3)O(4) ferrofluids as precursors. The monoliths obtained were crack free and showed both optical and magnetic properties. The structural properties were determined by infrared spectroscopy, x-ray diffractometry and transmission electron microscopy. Fe(3)O(4) particles of 20 nm size lie within the pores of the matrix without any strong Si-O-Fe bonding. The well established silica network provides effective confinement to these nanoparticles. The composites were transparent in the 600-800 nm regime and the field dependent magnetization curves suggest that the composite exhibits superparamagnetic characteristics.