Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 14(4): e1002435, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27088212

RESUMO

The study of infectious disease has been aided by model organisms, which have helped to elucidate molecular mechanisms and contributed to the development of new treatments; however, the lack of a conceptual framework for unifying findings across models, combined with host variability, has impeded progress and translation. Here, we fill this gap with a simple graphical and mathematical framework to study disease tolerance, the dose response curve relating health to microbe load; this approach helped uncover parameters that were previously overlooked. Using a model experimental system in which we challenged Drosophila melanogaster with the pathogen Listeria monocytogenes, we tested this framework, finding that microbe growth, the immune response, and disease tolerance were all well represented by sigmoid models. As we altered the system by varying host or pathogen genetics, disease tolerance varied, as we would expect if it was indeed governed by parameters controlling the sensitivity of the system (the number of bacteria required to trigger a response) and maximal effect size according to a logistic equation. Though either the pathogen or host immune response or both together could theoretically be the proximal cause of pathology that killed the flies, we found that the pathogen, but not the immune response, drove damage in this model. With this new understanding of the circuitry controlling disease tolerance, we can now propose better ways of choosing, combining, and developing treatments.


Assuntos
Doença , Animais , Drosophila melanogaster/microbiologia , Humanos , Listeria monocytogenes/patogenicidade
2.
PLoS Biol ; 14(4): e1002436, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27088359

RESUMO

Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through "disease space." We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels.


Assuntos
Infecções/fisiopatologia , Animais , Eritrócitos , Humanos , Malária/sangue , Malária/fisiopatologia , Camundongos , Plasmodium chabaudi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA