Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Biol ; 14(4)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35451490

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Assuntos
COVID-19 , SARS-CoV-2 , Síndrome da Liberação de Citocina , Humanos , Leucócitos Mononucleares , Monócitos
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34635581

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Assuntos
Benzotiazóis/farmacologia , Tratamento Farmacológico da COVID-19 , Oligopeptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Animais , Benzamidinas/química , Benzotiazóis/farmacocinética , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Ésteres/química , Guanidinas/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Oligopeptídeos/farmacocinética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/ultraestrutura , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
3.
bioRxiv ; 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34131661

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.

4.
PLoS Pathog ; 17(3): e1009402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705489

RESUMO

Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.


Assuntos
Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Norovirus/genética , Norovirus/patogenicidade , Virulência/genética , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/imunologia , Aptidão Genética/genética , Imunidade Inata/imunologia , Camundongos , Norovirus/imunologia , Polimorfismo de Nucleotídeo Único , Virulência/imunologia , Replicação Viral
5.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468683

RESUMO

It has long been known that noncoding genomic regions can be obligate cis elements acted upon in trans by gene products. In viruses, cis elements regulate gene expression, encapsidation, and other maturation processes, but mapping these elements relies on targeted iterative deletion or laborious prospecting for rare spontaneously occurring mutants. Here, we introduce a method to comprehensively map viral cis and trans elements at single-nucleotide resolution by high-throughput random deletion. Variable-size deletions are randomly generated by transposon integration, excision, and exonuclease chewback and then barcoded for tracking via sequencing (i.e., random deletion library sequencing [RanDeL-seq]). Using RanDeL-seq, we generated and screened >23,000 HIV-1 variants to generate a single-base resolution map of HIV-1's cis and trans elements. The resulting landscape recapitulated HIV-1's known cis-acting elements (i.e., long terminal repeat [LTR], Ψ, and Rev response element [RRE]) and, surprisingly, indicated that HIV-1's central DNA flap (i.e., central polypurine tract [cPPT] to central termination sequence [CTS]) is as critical as the LTR, Ψ, and RRE for long-term passage. Strikingly, RanDeL-seq identified a previously unreported ∼300-bp region downstream of RRE extending to splice acceptor 7 that is equally critical for sustained viral passage. RanDeL-seq was also used to construct and screen a library of >90,000 variants of Zika virus (ZIKV). Unexpectedly, RanDeL-seq indicated that ZIKV's cis-acting regions are larger than the untranscribed (UTR) termini, encompassing a large fraction of the nonstructural genes. Collectively, RanDeL-seq provides a versatile framework for generating viral deletion mutants, enabling discovery of replication mechanisms and development of novel antiviral therapeutics, particularly for emerging viral infections.IMPORTANCE Recent studies have renewed interest in developing novel antiviral therapeutics and vaccines based on defective interfering particles (DIPs)-a subset of viral deletion mutants that conditionally replicate. Identifying and engineering DIPs require that viral cis- and trans-acting elements be accurately mapped. Here, we introduce a high-throughput method (random deletion library sequencing [RanDeL-seq]) to comprehensively map cis- and trans-acting elements within a viral genome. RanDeL-seq identified essential cis elements in HIV, including the obligate nature of the once-controversial viral central polypurine tract (cPPT), and identified a new cis region proximal to the Rev responsive element (RRE). RanDeL-seq also identified regions of Zika virus required for replication and packaging. RanDeL-seq is a versatile and comprehensive technique to rapidly map cis and trans regions of a genome.


Assuntos
Mapeamento Cromossômico/métodos , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , HIV-1/genética , Zika virus/genética , Sequência de Bases , Biblioteca Gênica , Células HEK293 , HIV-1/metabolismo , Humanos , Deleção de Sequência , Replicação Viral , Zika virus/metabolismo
6.
Cell ; 173(7): 1609-1621.e15, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754821

RESUMO

Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.


Assuntos
Retroalimentação Fisiológica , HIV-1/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , HIV-1/genética , Humanos , Células Jurkat , Modelos Biológicos , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Imagem com Lapso de Tempo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA