Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861783

RESUMO

Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.


Assuntos
Fungicidas Industriais , Herbicidas , Abelhas , Animais , Herbicidas/toxicidade , Fungicidas Industriais/toxicidade , Aprendizagem , Condicionamento Clássico , Olfato
2.
Environ Toxicol Chem ; 41(10): 2603-2612, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866464

RESUMO

Herbicides are the most widely used pesticides globally. Although used to control weeds, they may also pose a risk to bee health. A key knowledge gap is how bees could be exposed to herbicides in the environment, including whether they may forage on treated plants before they die. We used a choice test to determine if bumblebees would forage on plants treated with glyphosate at two time periods after treatment. We also determined whether glyphosate and its degradation product aminomethylphosphonic acid were present as residues in the pollen collected by the bees while foraging. Finally, we explored if floral resources (nectar and pollen) remained present in plants after herbicide treatment. In general bees indiscriminately foraged on both plants treated with glyphosate and controls, showing no avoidance of treated plants. Although the time spent on individual flowers was slightly lower on glyphosate treated plants, this did not affect the bees' choice overall. We found that floral resources remained present in plants for at least 5 days after lethal treatment with glyphosate and that glyphosate residues were present in pollen for at least 70 h posttreatment. Our results suggest that bees could be exposed to herbicide in the environment, both topically and orally, by foraging on plants in the period between herbicide treatment and death. Identifying this route of exposure is a first step in understanding the risks of herbicides to bees. The effects of herbicides on bees themselves are uncertain and warrant further investigation to allow full risk assessment of these compounds to pollinating insects. Environ Toxicol Chem 2022;41:2603-2612. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Praguicidas , Animais , Abelhas , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Néctar de Plantas , Plantas , Glifosato
3.
Proc Biol Sci ; 289(1970): 20212353, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35232234

RESUMO

Agrochemical formulations are composed of two broad groups of chemicals: active ingredients, which confer pest control action, and 'inert' ingredients, which facilitate the action of the active ingredient. Most research into the effects of agrochemicals focusses on the effects of active ingredients. This reflects the assumption that 'inert' ingredients are non-toxic. A review of relevant research shows that for bees, this assumption is without empirical foundation. After conducting a systematic literature search, we found just 19 studies that tested the effects of 'inert' ingredients on bee health. In these studies, 'inert' ingredients were found to cause mortality in bees through multiple exposure routes, act synergistically with other stressors and cause colony level effects. This lack of research is compounded by a lack of diversity in study organism used. We argue that 'inert' ingredients have distinct, and poorly understood, ecological persistency profiles and toxicities, making research into their individual effects necessary. We highlight the lack of mitigation in place to protect bees from 'inert' ingredients and argue that research efforts should be redistributed to address the knowledge gap identified here. If so-called 'inert' ingredients are, in fact, detrimental to bee health, their potential role in widespread bee declines needs urgent assessment.


Assuntos
Praguicidas , Animais , Atenção , Abelhas , Praguicidas/toxicidade
5.
PLoS One ; 14(12): e0225743, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821341

RESUMO

Bees and the pollination services they deliver are beneficial to both food crop production, and for reproduction of many wild plant species. Bee decline has stimulated widespread interest in assessing hazards and risks to bees from the environment in which they live. While there is increasing knowledge on how the use of broad-spectrum insecticides in agricultural systems may impact bees, little is known about effects of other pesticides (or plant protection products; PPPs) such as herbicides and fungicides, which are used more widely than insecticides at a global scale. We adopted a systematic approach to review existing research on the potential impacts of fungicides and herbicides on bees, with the aim of identifying research approaches and determining knowledge gaps. While acknowledging that herbicide use can affect forage availability for bees, this review focussed on the potential impacts these compounds could have directly on bees themselves. We found that most studies have been carried out in Europe and the USA, and investigated effects on honeybees. Furthermore, certain effects, such as those on mortality, are well represented in the literature in comparison to others, such as sub-lethal effects. More studies have been carried out in the lab than in the field, and the impacts of oral exposure to herbicides and fungicides have been investigated more frequently than contact exposure. We suggest a number of areas for further research to improve the knowledge base on potential effects. This will allow better assessment of risks to bees from herbicides and fungicides, which is important to inform future management decisions around the sustainable use of PPPs.


Assuntos
Abelhas/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Pesquisa , Animais , Abelhas/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos dos fármacos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA