Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 9(6): 1571-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18452330

RESUMO

The competing mechanisms that regulate adhesion of bacteria to surfaces and subsequent biofilm formation remain unclear, though nearly all studies have focused on the role of physical and chemical properties of the material surface. Given the large monetary and health costs of medical-device colonization and hospital-acquired infections due to bacteria, there is considerable interest in better understanding of material properties that can limit bacterial adhesion and viability. Here we employ weak polyelectrolyte multilayer (PEM) thin films comprised of poly(allylamine) hydrochloride (PAH) and poly(acrylic acid) (PAA), assembled over a range of conditions, to explore the physicochemical and mechanical characteristics of material surfaces controlling adhesion of Staphylococcus epidermidis bacteria and subsequent colony growth. Although it is increasingly appreciated that eukaryotic cells possess subcellular structures and biomolecular pathways to sense and respond to local chemomechanical environments, much less is known about mechanoselective adhesion of prokaryotes such as these bacteria. We find that adhesion of viable S. epidermidis correlates positively with the stiffness of these polymeric substrata, independently of the roughness, interaction energy, and charge density of these materials. Quantitatively similar trends observed for wild-type and actin analogue mutant Escherichia coli suggest that these results are not confined to only specific bacterial strains, shapes, or cell envelope types. These results indicate the plausibility of mechanoselective adhesion mechanisms in prokaryotes and suggest that mechanical stiffness of substrata materials represents an additional parameter that can regulate adhesion of and subsequent colonization by viable bacteria.


Assuntos
Resinas Acrílicas/química , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Poliaminas/química , Cátions Monovalentes/química , Contagem de Colônia Microbiana , Elasticidade , Escherichia coli/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Teste de Materiais , Polieletrólitos , Polímeros/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/química
2.
Biomacromolecules ; 7(6): 1990-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16768424

RESUMO

Biochemical functionalization of surfaces is an increasingly utilized mechanism to promote or inhibit adhesion of cells. To promote mammalian cell adhesion, one common functionalization approach is surface conjugation of adhesion peptide sequences such as Arg-Gly-Asp (RGD), a ligand of transmembrane integrin molecules. It is generally assumed that such functionalization does not alter the local mechanical properties of the functionalized surface, as is important to interpretations of macromolecular mechanotransduction in cells. Here, we examine this assumption systematically, through nanomechanical measurement of the nominal elastic modulus of polymer multilayer films of nanoscale thickness, functionalized with RGD through different processing routes. We find that the method of biochemical functionalization can significantly alter mechanical compliance of polymeric substrata such as weak polyelectrolyte multilayers (PEMs), increasingly utilized materials for such studies. In particular, immersed adsorption of intermediate functionalization reagents significantly decreases compliance of the PEMs considered herein, whereas polymer-on-polymer stamping of these same reagents does not alter compliance of weak PEMs. This finding points to the potential unintended alteration of mechanical properties via surface functionalization and also suggests functionalization methods by which chemical and mechanical properties of cell substrata can be controlled independently.


Assuntos
Fibroblastos/efeitos dos fármacos , Membranas Artificiais , Peptídeos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Elasticidade , Camundongos , Células NIH 3T3 , Peptídeos/química , Poliaminas/química , Poliaminas/farmacologia , Propriedades de Superfície
3.
Proc Natl Acad Sci U S A ; 99(21): 13729-34, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12374859

RESUMO

T cell receptor (TCR)-mediated activation of CD4(+) T cells is known to require multivalent engagement of the TCR by, for example, oligomeric peptide-MHC complexes. In contrast, for CD8(+) T cells, there is evidence for TCR-mediated activation by univalent engagement of the TCR. We have here compared oligomeric and monomeric L(d) and K(b) peptide-MHC complexes and free peptide as stimulators of CD8(+) T cells expressing the 2C TCR. We found that the monomers are indeed effective in activating naive and effector CD8(+) T cells, but through an unexpected mechanism that involves transfer of peptide from soluble monomers to T cell endogenous MHC (K(b)) molecules. The result is that T cells, acting as antigen-presenting cells, are able to activate other naive T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Células Clonais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Técnicas In Vitro , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA