Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Opt ; 29(Suppl 1): S11516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38249994

RESUMO

Significance: Dynamic photoacoustic computed tomography (PACT) is a valuable imaging technique for monitoring physiological processes. However, current dynamic PACT imaging techniques are often limited to two-dimensional spatial imaging. Although volumetric PACT imagers are commercially available, these systems typically employ a rotating measurement gantry in which the tomographic data are sequentially acquired as opposed to being acquired simultaneously at all views. Because the dynamic object varies during the data-acquisition process, the sequential data-acquisition process poses substantial challenges to image reconstruction associated with data incompleteness. The proposed image reconstruction method is highly significant in that it will address these challenges and enable volumetric dynamic PACT imaging with existing preclinical imagers. Aim: The aim of this study is to develop a spatiotemporal image reconstruction (STIR) method for dynamic PACT that can be applied to commercially available volumetric PACT imagers that employ a sequential scanning strategy. The proposed reconstruction method aims to overcome the challenges caused by the limited number of tomographic measurements acquired per frame. Approach: A low-rank matrix estimation-based STIR (LRME-STIR) method is proposed to enable dynamic volumetric PACT. The LRME-STIR method leverages the spatiotemporal redundancies in the dynamic object to accurately reconstruct a four-dimensional (4D) spatiotemporal image. Results: The conducted numerical studies substantiate the LRME-STIR method's efficacy in reconstructing 4D dynamic images from tomographic measurements acquired with a rotating measurement gantry. The experimental study demonstrates the method's ability to faithfully recover the flow of a contrast agent with a frame rate of 10 frames per second, even when only a single tomographic measurement per frame is available. Conclusions: The proposed LRME-STIR method offers a promising solution to the challenges faced by enabling 4D dynamic imaging using commercially available volumetric PACT imagers. By enabling accurate STIRs, this method has the potential to significantly advance preclinical research and facilitate the monitoring of critical physiological biomarkers.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada por Raios X , Meios de Contraste , Processamento de Imagem Assistida por Computador
2.
Nat Commun ; 14(1): 6286, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813833

RESUMO

Altered vasoactivity is a major characteristic of cardiovascular and oncological diseases, and many therapies are therefore targeted to the vasculature. Therapeutics which are selective for the diseased vasculature are ideal, but whole-body selectivity of a therapeutic is challenging to assess in practice. Vessel myography is used to determine the functional mechanisms and evaluate pharmacological responses of vascularly-targeted therapeutics. However, myography can only be performed on ex vivo sections of individual arteries. We have developed methods for implementation of spherical-view photoacoustic tomography for non-invasive and in vivo myography. Using photoacoustic tomography, we demonstrate the measurement of acute vascular reactivity in the systemic vasculature and the placenta of female pregnant mice in response to two vasodilators. Photoacoustic tomography simultaneously captures the significant acute vasodilation of major arteries and detects selective vasoactivity of the maternal-fetal vasculature. Photoacoustic tomography has the potential to provide invaluable preclinical information on vascular response that cannot be obtained by other established methods.


Assuntos
Artérias , Vasodilatadores , Gravidez , Camundongos , Feminino , Animais , Artérias/diagnóstico por imagem , Artérias/fisiologia , Vasodilatação/fisiologia , Placenta/diagnóstico por imagem , Miografia/métodos
3.
J Biomed Opt ; 28(3): 036001, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36895414

RESUMO

Significance: To effectively study preclinical animal models, medical imaging technology must be developed with a high enough resolution and sensitivity to perform anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modes will enable a wide range of research applications to be studied in small animals. Aim: We introduce and characterize a dual-modality PA and FL imaging platform using in vivo and phantom experiments. Approach: The imaging platform's detection limits were characterized through phantom studies that determined the PA spatial resolution, PA sensitivity, optical spatial resolution, and FL sensitivity. Results: The system characterization yielded a PA spatial resolution of 173 ± 17 µ m in the transverse plane and 640 ± 120 µ m in the longitudinal axis, a PA sensitivity detection limit not less than that of a sample with absorption coefficient µ a = 0.258 cm - 1 , an optical spatial resolution of 70 µ m in the vertical axis and 112 µ m in the horizontal axis, and a FL sensitivity detection limit not < 0.9 µ M concentration of IR-800. The scanned animals displayed in three-dimensional renders showed high-resolution anatomical detail of organs. Conclusions: The combined PA and FL imaging system has been characterized and has demonstrated its ability to image mice in vivo, proving its suitability for biomedical imaging research applications.


Assuntos
Imagem Óptica , Técnicas Fotoacústicas , Animais , Camundongos , Imagem Óptica/métodos , Tomografia Computadorizada por Raios X , Tomografia , Análise Espectral , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos
4.
Biomed Opt Express ; 12(6): 3181-3195, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221653

RESUMO

Multimodal imaging systems are in high demand for preclinical research, experimental medicine, and clinical practice. Combinations of photoacoustic technology with other modalities including fluorescence, ultrasound, MRI, OCT have been already applied in feasibility studies. Nevertheless, only the combination of photoacoustics with ultrasound in a single setup is commercially available now. A combination of photoacoustics and fluorescence is another compelling approach because those two modalities naturally complement each other. Here, we presented a bimodal contrast agent based on the indocyanine green dye (ICG) as a single signalling compound embedded in the biocompatible and biodegradable polymer shell. We demonstrate its remarkable characteristics by imaging using a commercial photoacoustic/fluorescence tomography system (TriTom, PhotoSound Technologies). It was shown that photoacoustic signal of the particles depends on the amount of dye loaded into the shell, while fluorescence signal depends on the total amount of dye per particle. For the first time to our knowledge, a commercial bimodal photoacoustic/fluorescence setup was used for characterization of ICG doped polymer particles. Additionally, we conducted cell toxicity studies for these particles as well as studied biodistribution over time in vivo and ex vivo using fluorescent imaging. The obtained results suggest a potential for the application of biocompatible and biodegradable bimodal contrast agents as well as the integrated photoacoustic/fluorescence imaging system for preclinical and clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA