RESUMO
D-lactic acidosis (D-LA) is an uncommon complication of short bowel syndrome characterized by elevated plasma D-lactate and encephalopathy. Treatments include rehydration, dietary carbohydrate restriction, and antibiotics to alter the gut microbiota. Fecal microbiota transplantation (FMT) has recently been used in children to successfully treat D-LA. We compared the clinical course and then utilized metagenomic shotgun sequencing to describe changes in the composition and function of the intestinal microbiome following FMT in 2 patients with recurrent D-LA. FMT altered the composition of the fecal microbiota in these 2 patients with recurrent D-LA, though not necessarily in a consistent manner. Importantly, microbial metabolic pathways were also impacted by FMT, which may be critical for achieving desired clinical outcomes. While sample size limits the generalizability of our results, these findings set the stage for further understanding of the role of microbes in the pathogenesis of recurrent D-LA.
RESUMO
Patients with CF (pwCF) have high antibiotic use and an altered intestinal microbiome, known risk factors for infection with Clostridioides difficile. However, in adults with CF, C. difficile infection (CDI) is uncommon and asymptomatic colonization with C. difficile occurs frequently, for reasons that remain unclear. We investigated the rate, risk factors, and sequelae of asymptomatic C. difficile colonization in children with CF (cwCF). We identified that 32% of cwCF were colonized with C. difficile without acute gastrointestinal symptoms. Higher BMI and exposure to specific antibiotic classes (cephalosporins, fluoroquinolones, and vancomycin) were significantly associated with C. difficile colonization. No children developed symptomatic CDI in 90-days following enrollment.
Assuntos
Clostridioides difficile , Infecções por Clostridium , Fibrose Cística , Adulto , Humanos , Criança , Clostridioides , Prevalência , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Infecções Assintomáticas/epidemiologia , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/etiologia , Antibacterianos/uso terapêutico , Fatores de Risco , Progressão da DoençaRESUMO
Chronic granulomatous disease (CGD), a primary immunodeficiency characterized by a deficient neutrophil oxidative burst and the inadequate killing of microbes, is well known to cause a significantly increased risk of invasive infection. However, infectious complications are not the sole manifestations of CGD; substantial additional morbidity is driven by noninfectious complications also. These complications can include, for example, a wide range of inflammatory diseases that affect the gastrointestinal tract, lung, skin, and genitourinary tract and overt autoimmune disease. These diseases can occur at any age and are especially problematic in adolescents and adults with CGD. Many of these noninfectious complications present a highly challenging therapeutic conundrum, wherein immunosuppression must be balanced against an already markedly increased risk of invasive fungal and bacterial infections. In this review, the myriad noninfectious complications of CGD are discussed, as are important gaps in our understanding of these processes, which warrant further investigation.
Assuntos
Granuloma/etiologia , Doença Granulomatosa Crônica/complicações , Doenças Inflamatórias Intestinais/etiologia , Pneumopatias/etiologia , Doenças Autoimunes/complicações , Diagnóstico Diferencial , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Pneumopatias/diagnósticoRESUMO
Patients with cystic fibrosis, caused by mutations in CFTR, exhibit specific and consistent alterations in the levels of particular unsaturated fatty acids compared with healthy controls. Evidence suggests that these changes may play a role in the pathogenesis of this disease. Among these abnormalities are increases in the levels of n-7 and n-9 fatty acids, particularly palmitoleate (16:1n-7), oleate (18:1n-9), and eicosatrienoate or mead acid (20:3n-9). The underlying mechanisms of these particular changes are unknown, but similar changes in the n-3 and n-6 fatty acid families have been correlated with increased expression of fatty acid metabolic enzymes. This study demonstrated that cystic fibrosis cells in culture exhibit increased metabolism along the metabolic pathways leading to 16:1n-7, 18:1n-9, and 20:3n-9 compared with wild-type cells. Furthermore, these changes are accompanied by increased expression of the enzymes that produce these fatty acids, namely Δ5, Δ6, and Δ9 desaturases and elongases 5 and 6. Taken together, these findings suggest that fatty acid abnormalities of the n-7 and n-9 series in cystic fibrosis are as a result, at least in part, of increased expression and activity of these metabolic enzymes in CFTR-mutated cells.