Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(5): 757-768, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37074725

RESUMO

Carbamazepine (CBZ) is an aromatic anticonvulsant known to cause drug hypersensitivity reactions, which range in severity from relatively mild maculopapular exanthema to potentially fatal Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN). These reactions are known to be associated with human leukocyte antigen (HLA) class I alleles, and CBZ interacts preferentially with the related HLA proteins to activate CD8+ T-cells. This study aimed to evaluate the contribution of HLA class II in the effector mechanism(s) of CBZ hypersensitivity. CBZ-specific T-cells clones were generated from two healthy donors and two hypersensitive patients with high-risk HLA class I markers. Phenotype, function, HLA allele restriction, response pathways, and cross-reactivity of CBZ-specific T-cells were assessed using flow cytometry, proliferation analysis, enzyme-linked immunosorbent spot, and enzyme-linked immunosorbent assay. The association between HLA class II allele restriction and CBZ hypersensitivity was reviewed using Allele Frequency Net Database. Forty-four polyclonal CD4+ CBZ-specific T-cell clones were generated and found to be restricted to HLA-DR, particularly HLA-DRB1*07:01. This CD4+-mediated response proceeded through a direct pharmacological interaction between CBZ and HLA-DR molecules. Similar to the CD8+ response, CBZ-stimulated CD4+ clones secreted granulysin, a key mediator of SJS-TEN. Our database review revealed an association between HLA-DRB1*07:01 and CBZ-induced SJS-TEN. These findings implicate HLA class II antigen presentation as an additional pathogenic factor for CBZ hypersensitivity reactions. Both HLA class II molecules and drug-responsive CD4+ T-cells should be evaluated further to gain better insights into the pathogenesis of drug hypersensitivity reactions.


Assuntos
Hipersensibilidade a Drogas , Síndrome de Stevens-Johnson , Humanos , Linfócitos T CD8-Positivos , Cadeias HLA-DRB1/genética , Carbamazepina/efeitos adversos , Anticonvulsivantes/efeitos adversos , Hipersensibilidade a Drogas/genética , Antígenos HLA , Síndrome de Stevens-Johnson/genética , Linfócitos T CD4-Positivos , Antígenos HLA-B
2.
Annu Rev Pharmacol Toxicol ; 62: 509-529, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34516290

RESUMO

Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis.


Assuntos
Hipersensibilidade a Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Alelos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Antígenos HLA/genética , Humanos , Farmacogenética
3.
Allergy ; 76(6): 1825-1835, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33150583

RESUMO

BACKGROUND: Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS: Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS: CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION: The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.


Assuntos
Preparações Farmacêuticas , Linfócitos T , Linfócitos T CD4-Positivos , Células Clonais , Humanos , Leucócitos Mononucleares , Fígado , Ativação Linfocitária , Piridinas , Tiazinas
4.
Allergy ; 75(3): 636-647, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31549414

RESUMO

BACKGROUND: Abacavir is associated with hypersensitivity reactions in individuals positive for the HLA-B*57:01 allele. The drug binds within the peptide binding groove of HLA-B*57:01 altering peptides displayed on the cell surface. Presentation of these HLA-abacavir-peptide complexes to T-cells is hypothesized to trigger a CD8+ T-cell response underpinning the hypersensitivity. Thus, the aim of this study was to explore the relationship between the structure of abacavir with HLA-B*57:01 binding and the CD8+ T-cell activation. METHODS: Seventeen abacavir analogues were synthesized and cytokine secretion from abacavir/abacavir analogue-responsive CD8+ T-cell clones was measured using IFN-γ ELIspot. In silico docking studies were undertaken to assess the predicted binding poses of the abacavir analogues within the HLA-B*57:01 peptide binding groove. In parallel, the effect of selected abacavir analogues on the repertoire of self-peptides presented by cellular HLA-B*57:01 was characterized using mass spectrometry. RESULTS: Abacavir and ten analogues stimulated CD8+ T-cell IFN-γ release. Molecular docking of analogues that retained antiviral activity demonstrated a relationship between predicted HLA-B*57:01 binding orientations and the ability to induce a T-cell response. Analogues that stimulated T-cells displayed a perturbation of the natural peptides displayed by HLA-B*57:01. The antigen-specific CD8+ T-cell response was dependent on the enantiomeric form of abacavir at both cyclopropyl and cyclopentyl regions. CONCLUSION: Alteration of the chemical constitution of abacavir generates analogues that retain a degree of pharmacological activity, but have variable ability to activate T-cells. Modelling and immunopeptidome analysis delineate how drug HLA-B*57:01 binding and peptide display by antigen presenting cells relate to the activation of CD8+ T-cells.


Assuntos
Linfócitos T CD8-Positivos , Hipersensibilidade a Drogas , Didesoxinucleosídeos , Antígenos HLA-B/genética , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
5.
Chem Res Toxicol ; 33(1): 77-94, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31687800

RESUMO

Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.


Assuntos
Hipersensibilidade a Drogas/imunologia , Linfócitos T/imunologia , Animais , Humanos , Imunomodulação , Peso Molecular , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA