Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139592

RESUMO

Microalgae provide valuable bio-components with economic and environmental benefits. The monitoring of microalgal production is mostly performed using different sensors and analytical methods that, although very powerful, are limited to qualified users. This study proposes an automated Raman spectroscopy-based sensor for the online monitoring of microalgal production. For this purpose, an in situ system with a sampling station was made of a light-tight optical chamber connected to a Raman probe. Microalgal cultures were routed to this chamber by pipes connected to pumps and valves controlled and programmed by a computer. The developed approach was evaluated on Parachlorella kessleri under different culture conditions at a laboratory and an industrial algal platform. As a result, more than 4000 Raman spectra were generated and analysed by statistical methods. These spectra reflected the physiological state of the cells and demonstrate the ability of the developed sensor to monitor the physiology of microalgal cells and their intracellular molecules of interest in a complex production environment.


Assuntos
Clorófitas , Microalgas , Análise Espectral Raman/métodos , Microalgas/fisiologia
2.
Appl Microbiol Biotechnol ; 107(7-8): 2073-2095, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36867202

RESUMO

In the past decades, industrial and scientific communities have developed a complex standardized system (e.g., OECD, ISO, CEN) to evaluate the biodegradability of chemical substances. This system includes for OECD three levels of testing (ready and inherent biodegradability tests, simulation tests). It was adopted by many countries and is completely integrated into European legislation (registration, evaluation, authorization, and restriction of chemicals, REACH). Nevertheless, the different tests have certain deficiencies, and the question arises of how accurately these tests display the situation in the real environment and how the results can be used for predictions. This review will focus on the technical advantages and weaknesses of current tests concerning the technical setup, the inoculum characterization, and its biodegradation potential as well as the use of adequate reference compounds. A special focus of the article will be on combined test systems offering enhanced possibilities to predict biodegradation. The properties of microbial inocula are critically discussed, and a new concept concerning the biodegradation adaptation potential (BAP) of inocula is proposed. Furthermore, a probability model and different in silico QSAR (quantitative structure-activity relationships) models to predict biodegradation from chemical structures are reviewed. Another focus lies on the biodegradation of difficult single compounds and mixtures of chemicals like UVCBs (unknown or variable composition, complex reaction products, or biological materials) which will be an important challenge for the forthcoming decades. KEY POINTS: • There are many technical points to be improved in OECD/ISO biodegradation tests • The proper characterization of inocula is a crucial point in biodegradation tests • Combined biodegradation test systems offer extended possibilities for biodegradation tests.


Assuntos
Organização para a Cooperação e Desenvolvimento Econômico , Simulação por Computador , Biodegradação Ambiental
3.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746134

RESUMO

Water quality monitoring requires a rapid and sensitive method that can detect multiple hazardous pollutants at trace levels. This study aims to develop a new generation of biosensors using a low-cost fiber-optic Raman device. An automatic measurement system was thus conceived, built and successfully tested with toxic substances of three different types: antibiotics, heavy metals and herbicides. Raman spectroscopy provides a multiparametric view of metabolic responses of biological organisms to these toxic agents through their spectral fingerprints. Spectral analysis identified the most susceptible macromolecules in an E. coli model strain, providing a way to determine specific toxic effects in microorganisms. The automation of Raman analysis reduces the number of spectra required per sample and the measurement time: for four samples, time was cut from 3 h to 35 min by using a multi-well sample holder without intervention from an operator. The correct classifications were, respectively, 99%, 82% and 93% for the different concentrations of norfloxacin, while the results were 85%, 93% and 81% for copper and 92%, 90% and 96% for 3,5-dichlorophenol at the three tested concentrations. The work initiated here advances the technology needed to use Raman spectroscopy coupled with bioassays so that together, they can advance field toxicological testing.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Metais Pesados , Automação , Escherichia coli , Análise Espectral Raman/métodos
4.
Environ Sci Pollut Res Int ; 29(1): 1037-1050, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34341931

RESUMO

Characterizing waste ecotoxicity is laborious because of both the undefined nature of environmental samples and the diversity of contaminants that can be present. With regard to these limitations, traditional approaches do not provide information about the nature of the pollution encountered. To improve such assessments, a fluorescent library of 1870 transcriptomic reporters from Escherichia coli K12 MG1655 was used to report the ecotoxic status of environmental samples. The reliability of the approach was evaluated with 6 metallic pollutants (As, Cu, Cd, Hg, Pb, Zn) used alone and in mixture in pure and complex matrices. A total of 18 synthetic samples were used to characterize the specificity of the resulting metallic contamination fingerprints. Metallic contamination impacted 4.5 to 10.2% of the whole transcriptomic fingerprint of E. coli. The analysis revealed that a subset of 175 transcriptomic reporters is sufficient to characterize metallic contamination, regardless of the nature of the sample. A statistical model distinguished patterns due to metallic contamination and provided information about the level of toxicity with 93 to 98% confidence. The use of the transcriptomic assessment was validated for 17 complex matrices with various toxicities and metal contaminants, such as activated sludge, wastewater effluent, soil, wood and river water. The presence of metals and their associated toxicity, which seems linked to their bioavailabilities, were thereby determined. This method constitutes a possible tool to screen unknown complex samples for their metallic status and identify those for which a deeper characterization must be achieved by the use of traditional biosensors and analytical methods.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , China , Monitoramento Ambiental , Escherichia coli/genética , Metais Pesados/análise , Reprodutibilidade dos Testes , Medição de Risco , Poluentes do Solo/análise , Transcriptoma , Águas Residuárias
5.
Anal Bioanal Chem ; 413(23): 5859-5869, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318335

RESUMO

A novel enzymatic electrochemical biosensor was fabricated for the indirect detection of glyphosate-based acid phosphatase inhibition. The biosensor was constructed on a screen-printed carbon electrode modified with silver nanoparticles, decorated with electrochemically reduced graphene oxide, and chemically immobilized with acid phosphatase via glutaraldehyde cross-linking. We measured the oxidation current by chronoamperometry. The current arose from the enzymatic reaction of acid phosphatase and the enzyme-substrate disodium phenyl phosphate. The biosensing response is a decrease in signal resulting from inhibition of acid phosphatase in the presence of glyphosate inhibitor. The inhibition of acid phosphatase by glyphosate was investigated as a reversible competitive-type reaction based on the Lineweaver-Burk equation. Computational docking confirmed that glyphosate was the inhibitor bound in the substrate-binding pocket of acid phosphatase and that it was able to inhibit the enzyme efficiently. Additionally, the established method was applied to the selective analysis of glyphosate in actual samples with satisfactory results following a standard method.


Assuntos
Fosfatase Ácida/antagonistas & inibidores , Técnicas Eletroquímicas/instrumentação , Enzimas Imobilizadas/antagonistas & inibidores , Glicina/análogos & derivados , Herbicidas/análise , Técnicas Biossensoriais , Glicina/análise , Glicina/farmacologia , Herbicidas/farmacologia , Cinética , Limite de Detecção , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos , Glifosato
6.
Food Chem ; 358: 129916, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940303

RESUMO

The aim of the present study was to evaluate Raman spectroscopy in determining changes that occur in the structure of gluten proteins induced during bread dough mixing. Raman spectra were measured directly within the dough. Three particular phases of mixing were studied: under-mixing, optimum mixing and over-mixing. A thiol blocking reagent, Tris(2-carboxyethyl)phosphine (TCEP) was then used to reduce disulphide bonds within proteins to confirm the important role of disulphide bridges in gluten network formation. For the control dough, the most important changes occurred during the optimum mixing phase when an increase in intermolecular disulphide bonds, anti-parallel ß-sheet and α-helix structures was observed, combined with the hydrophobic burial of tryptophan and tyrosine residues. The addition of TCEP appeared to effectively reduce the formation of intermolecular disulphide bonds, anti-parallel ß-sheet and α-helix structures and lead to a more disordered secondary protein structure.


Assuntos
Pão , Dissulfetos/química , Glutens/química , Farinha , Fosfinas/química , Estrutura Secundária de Proteína , Análise Espectral Raman/métodos , Triticum , Triptofano/química , Tirosina/química
7.
Bioelectrochemistry ; 132: 107452, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31927189

RESUMO

A novel electrochemical immunosensor was developed for label-free detection of carcinoembryonic antigen (CEA) as a cancer biomarker. The designed immunosensor was based on CEA antibody (anti-CEA) anchored with core shell Fe3O4@Au nanoparticles which were immobilized on a screen-printed carbon electrode modified with manganese dioxide decorating on graphene nanoplatelets (SPCE/GNP-MnO2/Fe3O4@Au-antiCEA). The SPCE was placed onto a home-made electrode holder for easy handling. The approach was based on direct binding of CEA to a fixed amount of anti-CEA on the modified electrode for the specific detection using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) monitored in a solution containing 5 mM [Fe(CN)63-/4-] prepared in 0.1 M phosphate buffer at pH 7.4. The difference in signal response owing to the redox reaction of [Fe(CN)6]3-/4- before and after interaction with CEA was regarded as the immunosensor response corresponding directly to the CEA concentration. Under optimized conditions, the linear range of 0.001-100 ng/mL, and the detection limits of 0.10 pg/mL (LSV) and 0.30 pg/mL (EIS) were evaluated. The applicability of the immunosensor was verified by well-corresponding determination of CEA in diluted human serum samples by electrochemiluminescence (ECL) immunoassay. Therefore, the proposed immunosensor could be suitable enough for a real sample analysis of CEA.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário/análise , Grafite/química , Nanopartículas de Magnetita/química , Compostos de Manganês/química , Óxidos/química , Carbono/química , Eletrodos , Humanos , Limite de Detecção
8.
Water Res ; 166: 115079, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539666

RESUMO

The domestic usage of water generates approximately 310 km3 of wastewater worldwide (2015, AQUASTAT, Food and Agriculture Organization of United Nations). This sewage contains an important organic load due to the use of this water; this organic load is characterized using a standard method, namely, the biological oxygen demand measurement (BOD5). The BOD5 provides information about the biodegradable organic load (standard ISO 5815). However, this measurement protocol is very time-consuming (5 days) and may produce variability in approximately 20% of results mainly due to variation in the environmental inocula. To remedy these limitations, this work proposes an innovative concept relying on the implementation of a set of rigorously selected bacterial strains. This publication depicts the different steps used in this study, from bio-indicator selection to validation with real wastewater samples. The results obtained in the final step show a strong correlation between the developed approach and the reference method (ISO 5815) with a correlation rate of approximately 0.9. In addition, the optimization of the experimental conditions and the use of controlled strains (8 selected strains) allow significant reduction in the duration of the BOD5 analysis, with only 3 h required for the proposed method versus 5 days for the reference method. This technological breakthrough should simplify the monitoring of wastewater treatment plants and provide quicker, easier and more coherent control in terms of the treatment time.


Assuntos
Esgotos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Aprendizado de Máquina , Oxigênio , Água
9.
Anal Bioanal Chem ; 410(4): 1189-1190, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29184990
10.
Anal Bioanal Chem ; 410(4): 1341-1361, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29256079

RESUMO

We developed an easy-to-use method for the routine analysis of the central metabolism using an affordable low-resolution GC-MS system run in SIM mode. The profiling approach was optimized for the derivatization protocol of some 60 targeted metabolites. The performance of two silylation reagents (MSTFA and BSTFA) that allowed the comprehensive derivatization of 42 key intermediary metabolites of the 60 initially targeted (organic acids, phosphate derivatives, monosaccharides and amino acids) was measured. The experimental results unequivocally showed that the MSTFA reagent met mandatory criteria including ease of handling (a very simple one-step protocol was developed), comprehensiveness of derivatization (the 42 compounds covered the extended metabolic pathways of the central carbon metabolism, with a coverage percentage ranging from 17% for the worst to 90% for the best result), optimized response coefficient of the whole derivatives (median value greater than the others by one order of magnitude) and repeatability of the protocol (RSD value below 25% for the whole procedure). When tested in real conditions (cyanobacteria polar extract), the experimental results showed that the profiling methodology was adequately repeatable (RSD = 35%) to ensure quantification results comparable with much more sensitive analytical techniques (capillary electrophoresis/mass spectrometry and liquid chromatography/triple quadrupole mass spectrometry system), while needing only about twice the quantity of biomass. Graphical abstract Schematic overview of an easy-to-use profiling method for the routine analysis of the central metabolism using a low-resolution GC-MS system.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Spirulina/metabolismo , Padrões de Referência , Reprodutibilidade dos Testes , Soluções
11.
Chemosphere ; 189: 373-381, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28946071

RESUMO

Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples. This study presents the development and application of the first freeze-dried cyanobacterial bioassay for fresh-water contaminants detection. The effects of different cell growth phases, cryoprotectant solutions, freezing protocols, rehydration solutions and incubation conditions methods were evaluated and the best combination of these parameters for freeze-drying was selected. The study includes detailed characterization of sensitivity towards reference pollutants, as well as, comparison with the standard assays. Moreover, long-term viability and sensitivity were evaluated after 3 years of storage. Freeze-dried cyanobacteria showed, in general, higher sensitivity than the standard assays and viability of the cells remained after 3 years of storage. Finally, the validation of the bioassay using a wastewater sample was also evaluated. Freeze-drying of cyanobacteria in 96-well plates presents a simple, fast and multi-assay method for environmental monitoring.


Assuntos
Bioensaio/métodos , Cianobactérias/química , Monitoramento Ambiental/métodos , Aliivibrio fischeri/efeitos dos fármacos , Cianobactérias/efeitos dos fármacos , Liofilização , Água Doce , Photobacterium/efeitos dos fármacos
12.
Appl Biochem Biotechnol ; 181(1): 309-339, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27591882

RESUMO

DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.


Assuntos
Biodegradação Ambiental , DDT/toxicidade , Inseticidas/toxicidade , Poluentes do Solo/toxicidade , Monitoramento Ambiental , Humanos
13.
Environ Sci Pollut Res Int ; 23(18): 18684-93, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27312897

RESUMO

With thousands of organic chemicals released every day into our environment, Europe and other continents are confronted with increased risk of health and environmental problems. Even if a strict regulation such as REgistration, Authorization and restriction of CHemicals (REACH) is imposed and followed by industry to ensure that they prove the harmlessness of their substances, not all testing procedures are designed to cope with the complexity of the environment. This is especially true for the evaluation of persistence through biodegradability assessment guidelines. Our new approach has been to adapt "in the lab" biodegradability assessment to the environmental conditions and model the probability for a biodegradation test to be positive in the form of a logistic function of both the temperature and the viable cell density. Here, a proof of this new concept is proposed with the establishment of tri-dimensional biodegradability profiles of six chemicals (sodium benzoate, 4-nitrophenol, diethylene glycol, 2,4,5-trichlorophenol, atrazine, and glyphosate) between 4 to 30 °C and 10(4) to 10(8) cells ml(-1) as can be found in environmental compartments in time and space. The results show a significant increase of the predictive power of existing screening lab-scale tests designed for soluble substances. This strategy can be complementary to those current testing strategies with the creation of new indicators to quantify environmental persistence using lab-scale tests.


Assuntos
Biodegradação Ambiental , Modelos Teóricos , Atrazina/metabolismo , Bactérias/metabolismo , Clorofenóis/metabolismo , Etilenoglicóis/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Laboratórios , Nitrofenóis/metabolismo , Benzoato de Sódio/metabolismo , Glifosato
14.
Environ Sci Pollut Res Int ; 23(17): 17592-602, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27234835

RESUMO

Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances. The purpose of this study was to define an evaluation strategy following the assessment of different BIMs adapted to poorly water-soluble substances with ready biodegradability tests. The study was performed with two poorly water-soluble chemicals-a solid, anthraquinone, and a liquid, isodecyl neopentanoate-and five BIMs were compared to the direct addition method (reference method), i.e., (i) ultrasonic dispersion, (ii) adsorption onto silica gel, (iii) dispersion using an emulsifier, (iv) dispersion with silicone oil, and (v) dispersion with emulsifier and silicone oil. A two-phase evaluation strategy of solid and liquid chemicals was developed involving the selection of the most relevant BIMs for enhancing the biodegradability of tested substances. A description is given of a BIM classification ratio (R BIM), which enables a comparison to be made between the different test chemical sample preparation methods used in the various tests. Thereby, using this comparison, the BIMs giving rise to the greatest biodegradability were ultrasonic dispersion and dispersion with silicone oil or with silicone oil and emulsifier for the tested solid chemical, adsorption onto silica gel, and ultrasonic dispersion for the liquid one.


Assuntos
Água/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Solubilidade , Água/química
15.
Anal Bioanal Chem ; 408(30): 8761-8770, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27040532

RESUMO

Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.


Assuntos
Técnicas Biossensoriais/instrumentação , Cádmio/análise , Medições Luminescentes/estatística & dados numéricos , Modelos Biológicos , Poluentes Químicos da Água/análise , Aliivibrio fischeri/química , Aliivibrio fischeri/enzimologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Células Imobilizadas , Simulação por Computador , Monitoramento Ambiental/instrumentação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Oxigênio/química , Sefarose , Transgenes
16.
Environ Sci Pollut Res Int ; 23(5): 4340-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26162438

RESUMO

The degradation of the marine environment is a subject of concern for the European authorities primarily because of its contamination by hydrocarbons. The traditional methods (ISO 11348 standard) of general toxicity assessment are unsuitable in a context of in situ monitoring, such as seaports or bathing zones. Consequently, to address this issue, bacterial biosensors appear to be pertinent tools. This article presents the design of an innovative bioluminescent biosensor dedicated to in situ toxicity monitoring. This biosensor is based on the entrapment of the wild marine bioluminescent bacterial strain Aliivibrio fischeri ATCC® 49387™ in an agarose matrix within a disposable card. A pre-study was needed to select the most biological parameters. In particular, the regenerating medium's composition and the hydrogel concentration needed for the bacterial entrapment (mechanical resistance) were optimized. Based on these data, the ability of the bacterial reporter to assess the sample toxicity was demonstrated using naphthalene as a chemical model. The biosensor's results show a lower sensitivity to naphthalene (EC50 = 95 mg/L) compared with the results obtained using the reference method (EC50 = 43 mg/L). With this architecture, the biosensor is an interesting compromise among low maintenance, ease of use, appropriate sensitivity, relatively low cost and the ability to control online toxicity.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Técnicas Biossensoriais/métodos , Equipamentos Descartáveis , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/química , Técnicas Biossensoriais/instrumentação , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Medições Luminescentes , Sensibilidade e Especificidade
17.
Front Microbiol ; 6: 211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852669

RESUMO

The s-triazine herbicides are compounds which can disseminate into soils and water. Due to their toxic effects on living organisms, their concentrations in drinking water are legislated by WHO recommendations. Here we have developed for the first time, to the best of our knowledge, an alternative method for physicochemical quantification using two bioluminescent bacterial biosensors: E. coli SM003 for cyanuric acid detection and E. coli SM004 for both atrazine and cyanuric acid detection. The concentration of cyanuric acid detection for E. coli SM003 ranges from 7.83 µM to 2.89 mM, and for E. coli SM004 ranges from 0.22 to 15 µM. Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 µM. According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water. Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.

19.
Bioprocess Biosyst Eng ; 37(11): 2175-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24788985

RESUMO

Over the past years, the substitution of the classical biochemical quantification techniques by Fourier transform infrared (FTIR) spectroscopy has been widely studied on microalgae because of its tremendous application potential for bioprocess monitoring. In the present work, mandatory aspects that have never been approached by FTIR end-users working onto fresh biomass were assessed. We demonstrated first that fresh cells' FTIR spectra main characteristics could be severely and unspecifically altered when the properties of the sampled biomass were not monitored. Microscopy indicated that important cell reorganization could occur when diminishing the cells density of the sample. Molecular probing approach suggested that such a modification could provoke an alteration of the hydrogen-bonding network of the sample. The sample heterogeneity was found to impact also the shape and intensity of the recorded FTIR bands, participating then to a matrix effect uncharacterized until now. In the second part of our study, we selected FTIR spectra not influenced by this matrix effect and the corresponding accurate calibration data obtained by the whole cell analytical procedure to elaborate an optimized total lipid quantification PLS-R model. Results demonstrated that our strategy could provide a small volume sampling (1 mL of fresh culture), rapid (within minutes), robust (physiological condition independent), and accurate (as accurate as the reference method could be) FTIR absolute quantification method to determine the fresh microalgae intracellular total lipid content. To validate our unbiased FTIR approach, a photobioprocess monitoring pipeline was developed and allowed assessing the effect of light attenuation on total lipid production by the marine microalga Nannochloropsis oculata.


Assuntos
Lipídeos/análise , Microalgas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Biocombustíveis , Biomassa , Reatores Biológicos/microbiologia , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Estramenópilas/química , Estramenópilas/crescimento & desenvolvimento
20.
Environ Sci Pollut Res Int ; 21(16): 9538-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23653317

RESUMO

Polyether-based polyurethanes (PBP) are extremely problematic polymers due to their long persistence in the environment. Moreover, the assessment of PBP biodegradation remains biased due to the inability of conventional methods to determine how their diverse subunits are degraded. To improve our knowledge of PBP biodegradation, we used Raman spectroscopy to identify patterns of PBP biodegradation. Specifically, PBP biodegradation was assessed using a microbial inoculum isolated from an industrial soil in which polyurethanes have been buried for 40 years. During a 28-day biodegradation assay, the PBP biodegradation level reached 27.5% (w/w), in addition to undergoing profound alteration of the PBP composition as identified by chemical analyses. After microbial degradation, Raman analyses revealed the disappearance of the polymer's amorphous region, which contains a high polyol content, whereas the isocyanate-rich crystalline regions were preserved. The use of Raman spectroscopy appears to be a particularly useful tool to enhance our assessment of polymer biodegradation.


Assuntos
Biodegradação Ambiental , Resíduos Industriais/análise , Poliuretanos/metabolismo , Análise Espectral Raman , Modelos Moleculares , Estrutura Molecular , Polímeros , Poliuretanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA