RESUMO
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Mitocôndrias , Gotículas Lipídicas/metabolismo , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Metabolismo dos Lipídeos , Células HeLa , Células HEK293 , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genéticaRESUMO
Successful cell and gene therapy clinical trials have resulted in the US Food and Drug Administration and European Medicines Agency approving their use for treatment of patients with certain types of cancers and monogenetic diseases. These novel therapies, which rely heavily on lentiviral vectors to deliver therapeutic transgenes to patient cells, have driven additional investigations, increasing demand for both pre-clinical and current Good Manufacturing Practices-grade viral vectors. To better support novel studies by improving current production methods, we report the development of a genetically modified HEK293T-based cell line that is null for expression of both Protein Kinase R and Beta-2 microglobulin and grows in suspension using serum-free media, SJ293TS-DPB. Absence of Protein Kinase R increased anti-sense lentiviral vector titers by more than 7-fold, while absence of Beta-2 microglobulin, a key component of major histocompatibility complex class I molecules, has been reported to reduce the immunogenicity of lentiviral particles. Furthermore, we describe an improved methodology for culturing SJ293TS-DPB that facilitates expansion, reduces handling, and increases titers by 2-fold compared with previous methods. SJ293TS-DPB stably produced lentiviral vectors for over 4 months and generated lentiviral vectors that efficiently transduce healthy human donor T cells and CD34+ hematopoietic stem cells.
RESUMO
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic switch.
RESUMO
Lentiviral vector (LV)-based gene therapy holds promise for a broad range of diseases. Analyzing more than 280,000 vector integration sites (VISs) in 273 samples from 10 patients with X-linked severe combined immunodeficiency (SCID-X1), we discovered shared LV integrome signatures in 9 of 10 patients in relation to the genomics, epigenomics, and 3D structure of the human genome. VISs were enriched in the nuclear subcompartment A1 and integrated into super-enhancers close to nuclear pore complexes. These signatures were validated in T cells transduced with an LV encoding a CD19-specific chimeric antigen receptor. Intriguingly, the one patient whose VISs deviated from the identified integrome signatures had a distinct clinical course. Comparison of LV and gamma retrovirus integromes regarding their 3D genome signatures identified differences that might explain the lower risk of insertional mutagenesis in LV-based gene therapy. Our findings suggest that LV integrome signatures, shaped by common features such as genome organization, may affect the efficacy of LV-based cellular therapies.
Assuntos
Vetores Genéticos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Humanos , Vetores Genéticos/genética , Terapia Genética , Retroviridae/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Linfócitos TRESUMO
Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the ß-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) ß-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the ß-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human ß-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.
RESUMO
Hematopoietic stem cell gene therapy for hemoglobin disorders, including sickle cell disease, requires high-efficiency lentiviral gene transfer and robust therapeutic globin expression in erythroid cells. Erythropoietin is a key cytokine for erythroid proliferation and differentiation (erythropoiesis), and truncated human erythropoietin receptors (thEpoR) have been reported in familial polycythemia. We reasoned that coexpression of thEpoR could enhance the phenotypic effect of a therapeutic vector in erythroid cells in xenograft mouse and autologous nonhuman primate transplantation models. We generated thEpoR by deleting 40 amino acids from the carboxyl terminus, allowing for erythropoietin-dependent enhanced erythropoiesis of gene-modified cells. We then designed lentiviral vectors encoding both thEpoR and B cell lymphoma/leukemia 11A (BCL11A)-targeting microRNA-adapted short hairpin RNA (shmiR BCL11A) driven by an erythroid-specific promoter. thEpoR expression enhanced erythropoiesis among gene-modified cells in vitro. We then transplanted lentiviral vector gene-modified CD34+ cells with erythroid-specific expression of both thEpoR and shmiR BCL11A and compared to cells modified with shmiR BCL11A only. We found that thEpoR enhanced shmiR BCL11A-based fetal hemoglobin (HbF) induction in both xenograft mice and rhesus macaques, whereas HbF induction with shmiR BCL11A only was robust, yet transient. thEpoR/shmiR BCL11A coexpression allowed for sustained HbF induction at 20 to 25% in rhesus macaques for 4 to 8 months. In summary, we developed erythroid-specific thEpoR/shmiR BCL11A-expressing vectors, enhancing HbF induction in xenograft mice and rhesus macaques. The sustained HbF induction achieved by addition of thEpoR and shmiR BCL11A may represent a viable gene therapy strategy for hemoglobin disorders.
Assuntos
Hemoglobina Fetal , Receptores da Eritropoetina , Animais , Células Eritroides , Hemoglobina Fetal/genética , Macaca mulatta , Camundongos , Receptores da Eritropoetina/genética , Proteínas RepressorasRESUMO
To optimize the public health response to coronavirus disease 2019 (COVID-19), we must first understand the antibody response to individual proteins on the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the antibody's cross reactivity to other coronaviruses. Using a panel of 37 convalescent COVID-19 human serum samples, we showed that the magnitude and specificity of responses varied across individuals, independent of their reactivity to seasonal human coronaviruses (HCoVs). These data suggest that COVID-19 vaccines will elicit primary humoral immune responses in naïve individuals and variable responses in those previously exposed to SARS-CoV-2. Unlike the limited cross-coronavirus reactivities in humans, serum samples from 96 dogs and 10 cats showed SARS-CoV-2 protein-specific responses focused on non-S1 proteins. The correlation of this response with those to other coronaviruses suggests that the antibodies are cross-reactive and generated to endemic viruses within these hosts, which must be considered in seroepidemiologic studies. We conclude that substantial variation in antibody generation against coronavirus proteins will influence interpretations of serologic data in the clinical and veterinary settings.
RESUMO
Chimeric antigen receptor (CAR) T cells targeting CD123, an acute myeloid leukemia (AML) antigen, hold the promise of improving outcomes for patients with refractory/recurrent disease. We generated five lentiviral vectors encoding CD20, which may serve as a target for CAR T cell depletion, and 2nd or 3rd generation CD123-CARs since the benefit of two costimulatory domains is model dependent. Four CARs were based on the CD123-specific single-chain variable fragment (scFv) 26292 (292) and one CAR on the CD123-specific scFv 26716 (716), respectively. We designed CARs with different hinge/transmembrane (H/TM) domains and costimulatory domains, in combination with the zeta (z) signaling domain: 292.CD8aH/TM.41BBz (8.41BBz), 292.CD8aH/TM.CD28z (8.28z), 716.CD8aH/TM.CD28z (716.8.28z), 292.CD28H/TM. CD28z (28.28z), and 292.CD28H/TM.CD28.41BBz (28.28.41BBz). Transduction efficiency, expansion, phenotype, and target cell recognition of the generated CD123-CAR T cells did not significantly differ. CAR constructs were eliminated for the following reasons: (1) 8.41BBz CARs induced significant baseline signaling, (2) 716.8.28z CAR T cells had decreased anti-AML activity, and (3) CD28.41BBz CAR T cells had no improved effector function in comparison to CD28z CAR T cells. We selected the 28.28z CAR since CAR expression on the cell surface of transduced T cells was higher in comparison to 8.28z CARs. The clinical study (NCT04318678) evaluating 28.28z CAR T cells is now open for patient accrual.
RESUMO
B7-H3 is actively being explored as an immunotherapy target for pediatric patients with solid tumors using monoclonal antibodies or T cells expressing chimeric antigen receptors (CARs). B7-H3-CARs containing a 41BB costimulatory domain are currently favored by several groups based on preclinical studies. In this study, we initially performed a detailed analysis of T cells expressing B7-H3-CARs with different hinge/transmembrane (CD8α versus CD28) and CD28 or 41BB costimulatory domains (CD8α/CD28, CD8α/41BB, CD28/CD28, CD28/41BB). Only subtle differences in effector function were observed between CAR T cell populations in vitro. However, CD8α/CD28-CAR T cells consistently outperformed other CAR T cell populations in three animal models, resulting in a significant survival advantage. We next explored whether adding 41BB signaling to CD8α/CD28-CAR T cells would further enhance effector function. Surprisingly, incorporating 41BB signaling into the CAR endodomain had detrimental effects, while expressing 41BBL on the surface of CD8α/CD28-CAR T cells enhanced their ability to kill tumor cells in repeat stimulation assays. Furthermore, 41BBL expression enhanced CD8α/CD28-CAR T cell expansion in vivo and improved antitumor activity in one of four evaluated models. Thus, our study highlights the intricate interplay between CAR hinge/transmembrane and costimulatory domains. Based on our study, we selected CD8α/CD28-CAR T cells expressing 41BBL for early phase clinical testing.
RESUMO
Lentiviral vectors are increasingly utilized in cell and gene therapy applications because they efficiently transduce target cells such as hematopoietic stem cells and T cells. Large-scale production of current Good Manufacturing Practices-grade lentiviral vectors is limited because of the adherent, serum-dependent nature of HEK293T cells used in the manufacturing process. To optimize large-scale clinical-grade lentiviral vector production, we developed an improved production scheme by adapting HEK293T cells to grow in suspension using commercially available and chemically defined serum-free media. Lentiviral vectors with titers equivalent to those of HEK293T cells were produced from SJ293TS cells using optimized transfection conditions that reduced the required amount of plasmid DNA by 50%. Furthermore, purification of SJ293TS-derived lentiviral vectors at 1 L yielded a recovery of 55% ± 14% (n = 138) of transducing units in the starting material, more than a 2-fold increase over historical yields from adherent HEK293T serum-dependent lentiviral vector preparations. SJ293TS cells were stable to produce lentiviral vectors over 4 months of continuous culture. SJ293TS-derived lentiviral vectors efficiently transduced primary hematopoietic stem cells and T cells from healthy donors. Overall, our SJ293TS cell line enables high-titer vector production in serum-free conditions while reducing the amount of input DNA required, resulting in a highly efficient manufacturing option.
RESUMO
X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1.
Assuntos
Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Adolescente , Adulto , Linfócitos B/metabolismo , Criança , Vetores Genéticos/genética , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Células Matadoras Naturais/metabolismo , Masculino , Linfócitos T/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Adulto JovemRESUMO
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14(ARF) and p16(INK4a) expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14(ARF) and p16I(NK4a). By contrast, p16(INK4a) was not detectably expressed in Wp-R BL and the low-level expression of p14(ARF) was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21(WAF1/CIP1), a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21(WAF1/CIP1) expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs.
Assuntos
Antígenos Virais/metabolismo , Linfoma de Burkitt/virologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Humanos , CamundongosAssuntos
Erros de Diagnóstico , Vetores Genéticos/genética , Infecções por HIV/diagnóstico , Lentivirus/genética , Transdução Genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Adulto , Reações Falso-Positivas , Humanos , Masculino , Reação em Cadeia da Polimerase , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Adulto JovemRESUMO
Retroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 10(7) transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common gamma chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 x 10(7) TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1).
Assuntos
Terapia Genética/métodos , Subunidade gama Comum de Receptores de Interleucina/administração & dosagem , Imunodeficiência Combinada Severa/terapia , Transfecção/métodos , Linhagem Celular , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , HIV/genética , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Sequências Repetidas TerminaisRESUMO
The ability to bind extracellular matrix proteins is a critical virulence determinant for skin pathogens. Haemophilus ducreyi, the etiological agent of the genital ulcer disease chancroid, binds extracellular matrix components, including fibronectin (FN). We investigated H. ducreyi FN binding and report several important findings about this interaction. First, FN binding by H. ducreyi was greatly increased in bacteria grown on heme and almost completely inhibited by hemoglobin. Second, wild-type strain 35000HP bound significantly more FN than did a dsrA mutant in two different FN binding assays. Third, the expression of dsrA in the dsrA mutant restored FN binding and conferred the ability to bind FN to a non-FN-binding Haemophilus influenzae strain. Fourth, an anti-DsrA monoclonal antibody partially blocked FN binding by H. ducreyi. The hemoglobin receptor, the collagen-binding protein, the H. ducreyi lectin, the fine-tangle pili, and the outer membrane protein OmpA2 were not involved in H. ducreyi FN binding, since single mutants bound FN as well as the parent strain did. However, the major outer membrane protein may have a minor role in FN binding by H. ducreyi, since a double dsrA momp mutant bound less FN than did the single dsrA mutant. Finally, despite major sequence differences, DsrA proteins from both class I and class II H. ducreyi strains mediated FN and vitronectin binding. We concluded that DsrA is the major factor involved in FN binding by both classes of H. ducreyi strains.