Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Lancet Infect Dis ; 23(5): 568-577, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462526

RESUMO

BACKGROUND: Malaria outbreaks are important public health concerns that can cause resurgence in endemic regions approaching elimination. We investigated a Plasmodium falciparum outbreak in Attapeu Province, Laos, during the 2020-21 malaria season, using genomic epidemiology methods to elucidate parasite population dynamics and identify its causes. METHODS: In this genetic analysis, 2164 P falciparum dried blood spot samples were collected from southern Laos between Jan 1, 2017, and April 1, 2021, which included 249 collected during the Attapeu outbreak between April 1, 2020, and April 1, 2021, by routine surveillance. Genetic barcodes obtained from these samples were used to investigate epidemiological changes underpinning the outbreak, estimate population diversity, and analyse population structure. Whole-genome sequencing data from additional historical samples were used to reconstruct the ancestry of outbreak strains using identity-by-descent analyses. FINDINGS: The outbreak parasite populations were characterised by unprecedented loss of genetic diversity, primarily caused by rapid clonal expansion of a multidrug-resistant strain (LAA1) carrying the kelch13 Arg539Thr (R539T) mutation. LAA1 replaced kelch13 Cys580Tyr (C580Y) mutants resistant to dihydroartemisinin-piperaquine (KEL1/PLA1) as the dominant strain. LAA1 inherited 58·8% of its genome from a strain circulating in Cambodia in 2008. A secondary outbreak strain (LAA2) carried the kelch13 C580Y allele, and a genome that is essentially identical to a Cambodian parasite from 2009. A third, low-frequency strain (LAA7) was a recombinant of KEL1/PLA1 with a kelch13 R539T mutant. INTERPRETATION: These results strongly suggest that the outbreak was driven by a selective sweep, possibly associated with multidrug-resistant phenotypes of the outbreak strains. Established resistant populations can circulate at low frequencies for years before suddenly overwhelming dominant strains when the conditions for selection become favourable-eg, when front-line therapies change. Genetic surveillance can support elimination by characterising key properties of outbreaks such as population diversity, drug resistance marker prevalence, and the origins of outbreak strains. FUNDING: Bill & Melinda Gates Foundation; The Global Fund to Fight AIDS, Tuberculosis and Malaria; Wellcome Trust. TRANSLATION: For the Lao translation of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Plasmodium falciparum/genética , Laos/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Epidemiologia Molecular , Resistência a Medicamentos/genética , Malária/epidemiologia , Surtos de Doenças , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
2.
Antimicrob Agents Chemother ; 65(12): e0112121, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516247

RESUMO

Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People's Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Marcadores Genéticos , Humanos , Estudos Longitudinais , Malária Falciparum/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
3.
Elife ; 102021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34372970

RESUMO

Background: National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Methods: Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. Results: GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. Conclusions: GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. Funding: The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.


Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Erradicação de Doenças/estatística & dados numéricos , Resistência a Medicamentos/genética , Malária/prevenção & controle , Plasmodium/genética , Animais , Sudeste Asiático , Bangladesh , República Democrática do Congo , Índia , Plasmodium/efeitos dos fármacos
4.
PLoS Med ; 17(11): e1003393, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211712

RESUMO

BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Vivax/tratamento farmacológico , Plasmodium vivax/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Adulto Jovem
5.
Malar J ; 19(1): 271, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32718342

RESUMO

The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.


Assuntos
Monitoramento Epidemiológico , Genótipo , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Vigilância da População , Ásia/epidemiologia , Congressos como Assunto , Retroalimentação , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Ilhas do Pacífico/epidemiologia
6.
Lancet Infect Dis ; 19(9): 943-951, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31345709

RESUMO

BACKGROUND: A multidrug-resistant co-lineage of Plasmodium falciparum malaria, named KEL1/PLA1, spread across Cambodia in 2008-13, causing high rates of treatment failure with the frontline combination therapy dihydroartemisinin-piperaquine. Here, we report on the evolution and spread of KEL1/PLA1 in subsequent years. METHODS: For this genomic epidemiology study, we analysed whole genome sequencing data from P falciparum clinical samples collected from patients with malaria between 2007 and 2018 from Cambodia, Laos, northeastern Thailand, and Vietnam, through the MalariaGEN P falciparum Community Project. Previously unpublished samples were provided by two large-scale multisite projects: the Tracking Artemisinin Resistance Collaboration II (TRAC2) and the Genetic Reconnaissance in the Greater Mekong Subregion (GenRe-Mekong) project. By investigating genome-wide relatedness between parasites, we inferred patterns of shared ancestry in the KEL1/PLA1 population. FINDINGS: We analysed 1673 whole genome sequences that passed quality filters, and determined KEL1/PLA1 status in 1615. Before 2009, KEL1/PLA1 was only found in western Cambodia; by 2016-17 its prevalence had risen to higher than 50% in all of the surveyed countries except for Laos. In northeastern Thailand and Vietnam, KEL1/PLA1 exceeded 80% of the most recent P falciparum parasites. KEL1/PLA1 parasites maintained high genetic relatedness and low diversity, reflecting a recent common origin. Several subgroups of highly related parasites have recently emerged within this co-lineage, with diverse geographical distributions. The three largest of these subgroups (n=84, n=79, and n=47) mostly emerged since 2016 and were all present in Cambodia, Laos, and Vietnam. These expanding subgroups carried new mutations in the crt gene, which arose on a specific genetic background comprising multiple genomic regions. Four newly emerging crt mutations were rare in the early period and became more prevalent by 2016-17 (Thr93Ser, rising to 19·8%; His97Tyr to 11·2%; Phe145Ile to 5·5%; and Ile218Phe to 11·1%). INTERPRETATION: After emerging and circulating for several years within Cambodia, the P falciparum KEL1/PLA1 co-lineage diversified into multiple subgroups and acquired new genetic features, including novel crt mutations. These subgroups have rapidly spread into neighbouring countries, suggesting enhanced fitness. These findings highlight the urgent need for elimination of this increasingly drug-resistant parasite co-lineage, and the importance of genetic surveillance in accelerating malaria elimination efforts. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Sudeste Asiático/epidemiologia , Quimioterapia Combinada , Estudo de Associação Genômica Ampla , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Mutação , Filogenia , Filogeografia , Proteínas de Protozoários/genética , Quinolinas/uso terapêutico , Sequenciamento Completo do Genoma
7.
Lancet Infect Dis ; 19(9): 952-961, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31345710

RESUMO

BACKGROUND: The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015-18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam. The immediate public health importance of our findings prompted us to report the efficacy data on dihydroartemisinin-piperaquine and its determinants ahead of the results of the overall trial, which will be published later this year. METHODS: Patients aged between 2 and 65 years presenting with uncomplicated P falciparum or mixed species malaria at seven sites in Thailand, Cambodia, and Vietnam were randomly assigned to receive dihydroartemisinin-piperaquine with or without mefloquine, as part of the TRACII trial. The primary outcome was the PCR-corrected efficacy at day 42. Next-generation sequencing was used to assess the prevalence of molecular markers associated with artemisinin resistance (kelch13 mutations, in particular Cys580Tyr) and piperaquine resistance (plasmepsin-2 and plasmepsin-3 amplifications and crt mutations). This study is registered with ClinicalTrials.gov, number NCT02453308. FINDINGS: Between Sept 28, 2015, and Jan 18, 2018, 539 patients with acute P falciparum malaria were screened for eligibility, 292 were enrolled, and 140 received dihydroartemisinin-piperaquine. The overall Kaplan-Meier estimate of PCR-corrected efficacy of dihydroartemisinin-piperaquine at day 42 was 50·0% (95% CI 41·1-58·3). PCR-corrected efficacies for individual sites were 12·7% (2·2-33·0) in northeastern Thailand, 38·2% (15·9-60·5) in western Cambodia, 73·4% (57·0-84·3) in Ratanakiri (northeastern Cambodia), and 47·1% (33·5-59·6) in Binh Phuoc (southwestern Vietnam). Treatment failure was associated independently with plasmepsin2/3 amplification status and four mutations in the crt gene (Thr93Ser, His97Tyr, Phe145Ile, and Ile218Phe). Compared with the results of our previous TRACI trial in 2011-13, the prevalence of molecular markers of artemisinin resistance (kelch13 Cys580Tyr mutations) and piperaquine resistance (plasmepsin2/3 amplifications and crt mutations) has increased substantially in the Greater Mekong subregion in the past decade. INTERPRETATION: Dihydroartemisinin-piperaquine is not treating malaria effectively across the eastern Greater Mekong subregion. A highly drug-resistant P falciparum co-lineage is evolving, acquiring new resistance mechanisms, and spreading. Accelerated elimination of P falciparum malaria in this region is needed urgently, to prevent further spread and avoid a potential global health emergency. FUNDING: UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and National Institutes of Health.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Múltiplos Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Quinolinas/uso terapêutico , Adolescente , Adulto , Camboja , Quimioterapia Combinada , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mefloquina/uso terapêutico , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Mutação , Plasmodium falciparum/efeitos dos fármacos , Estudos Prospectivos , Proteínas de Protozoários/genética , Tailândia , Falha de Tratamento , Vietnã , Adulto Jovem
8.
Malar J ; 18(1): 20, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674319

RESUMO

BACKGROUND: Plasmodium vivax malaria elimination can only be achieved by the deployment of 8-aminoquinolines (primaquine and tafenoquine) in combination with ACT to kill both blood and liver-stage parasites. However, primaquine and the other 8-aminoquinolines cause dose-dependent haemolysis in subjects with G6PD deficiency, an X-linked disorder of red blood cells that is very common in populations living in tropical and subtropical areas. In order to inform safer use of 8-aminoquinolines in the Greater Mekong Subregion, a multi-centre study was carried out to assess the prevalence of G6PD deficiency and to identify the main G6PD variants in samples collected in Cambodia, Lao PDR, Myanmar, Thailand and Vietnam. METHODS: Blood samples were collected in the five countries during National Malaria Surveys or during Population Surveys. During Population Surveys samples were characterized for G6PD phenotype using the Fluorescent Spot Test. Samples were then genotyped for a panel of G6PD mutations. RESULTS: G6PD deficiency was found to be common in the region with an overall mean prevalence of deficient or mutated hemizygous males of 14.0%, ranging from a mean 7.3% in Thailand, 8.1% in Lao PDR, 8.9% in Vietnam, 15.8% in Myanmar and 18.8% in Cambodia. Mahidol and Viangchan mutations were the most common and widespread variants found among the nine investigated. CONCLUSIONS: Owing to the high prevalence of G6PD deficiency in the Greater Mekong Subregion, strategies for vivax malaria elimination should include point-of-care G6PD testing (both qualitative and quantitative) to allow safe and wide treatment with 8-aminoquinolines.


Assuntos
Variação Genética , Genótipo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Glucosefosfato Desidrogenase/análise , Adolescente , Adulto , Sudeste Asiático/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
9.
Malar J ; 16(1): 444, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110709

RESUMO

BACKGROUND: Prophylaxis for high-risk populations, such as forest workers, could be one component for malaria elimination in the Greater Mekong Sub-region. A study was conducted to assess the malaria incidence in forest rangers and the feasibility of malaria prophylaxis for rangers sleeping in forest camps. METHODS: Forest rangers deployed in the Bu Gia Map National Park, Vietnam were invited to participate in the study. Plasmodium infections were cleared using presumptive treatment, irrespective of malaria status, with a 3-day course dihydroartemisinin/piperaquine (DP) and a 14-day course of primaquine. Before returning to the forest, study participants were randomly allocated to a 3-day course of DP or placebo. Fifteen days after returning from their forest deployment the participants were tested for Plasmodium infections using uPCR. RESULTS: Prior to treatment, 30 of 150 study participants (20%) were found to be infected with Plasmodium. Seventeen days (median) after enrolment the rangers were randomized to DP or placebo 2 days before returning to forest camps where they stayed between 2 and 20 days (median 9.5 days). One ranger in the DP-prophylaxis arm and one in the placebo arm were found to be infected with Plasmodium falciparum 15 days (median) after returning from the forest. The evaluable P. falciparum isolates had molecular markers indicating resistance to artemisinins (K13-C580Y) and piperaquine (plasmepsin), but none had multiple copies of pfmdr1 associated with mefloquine resistance. CONCLUSION: Anti-malarial prophylaxis in forest rangers is feasible. The findings of the study highlight the threat of multidrug-resistant malaria. Trial registration NCT02788864.


Assuntos
Antibioticoprofilaxia/estatística & dados numéricos , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Doenças Profissionais/epidemiologia , Doenças Profissionais/prevenção & controle , Adulto , Artemisininas/uso terapêutico , Quimioterapia Combinada/estatística & dados numéricos , Estudos de Viabilidade , Humanos , Incidência , Masculino , Parques Recreativos , Projetos Piloto , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Prevalência , Primaquina/uso terapêutico , Quinolinas/uso terapêutico , Vietnã/epidemiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28137815

RESUMO

The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites.


Assuntos
Doenças Endêmicas , Malária Falciparum/epidemiologia , Mutação , Parasitemia/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Alelos , Antimaláricos/farmacologia , Artemisininas/farmacologia , Ensaios Clínicos como Assunto , Combinação de Medicamentos , Monitoramento Epidemiológico , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Expressão Gênica , Frequência do Gene , Haplótipos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Quinolinas/farmacologia , Vietnã/epidemiologia
12.
Malar J ; 16(1): 27, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086775

RESUMO

BACKGROUND: Artemisinin resistant Plasmodium falciparum has emerged in the countries of the Greater Mekong sub-region posing a serious threat to global malaria elimination efforts. The relationship of artemisinin resistance to treatment failure has been unclear. METHODS: In annual studies conducted in three malaria endemic provinces in the south of Vietnam (Binh Phuoc, Ninh Thuan and Gia Lai) between 2011 and 2015, 489 patients with uncomplicated P. falciparum malaria were enrolled in detailed clinical, parasitological and molecular therapeutic response assessments with 42 days follow up. Patients received the national recommended first-line treatment dihydroartemisinin-piperaquine for three days. RESULTS: Over the 5 years the proportion of patients with detectable parasitaemia on day 3 rose steadily from 38 to 57% (P < 0.001). In Binh Phuoc province, the parasite clearance half-life increased from 3.75 h in 2011 to 6.60 h in 2015 (P < 0.001), while treatment failures rose from 0% in 2012 and 2013, to 7% in 2014 and 26% in 2015 (P < 0.001). Recrudescence was associated with in vitro evidence of artemisinin and piperaquine resistance. In the treatment failures cases of 2015, all 14 parasite isolates carried the C580Y Pfkelch 13 gene, marker of artemisinin resistance and 93% (13/14) of them carried exoE415G mutations, markers of piperaquine resistance. CONCLUSIONS: In the south of Vietnam recent emergence of piperaquine resistant P. falciparum strains has accelerated the reduced response to artemisinin and has led to treatment failure rates of up to 26% to dihydroartemisinin-piperaquine, Vietnam's current first-line ACT. Alternative treatments are urgently needed.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Adolescente , Adulto , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Humanos , Incidência , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Masculino , Plasmodium falciparum/isolamento & purificação , Quinolinas/uso terapêutico , Fatores de Tempo , Falha de Tratamento , Vietnã/epidemiologia , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-27872070

RESUMO

The MIC of an antimalarial drug for a particular infection is the drug level associated with a net parasite multiplication rate of one per asexual cycle. To ensure the cure of malaria, the MIC must be exceeded until all parasites have been eliminated. The development of highly sensitive and accurate PCR quantitation of low-density malaria parasitemia enables the prospective pharmacokinetic-pharmacodynamic (PK-PD) characterization of antimalarial drug effects and now allows identification of the in vivo MIC. An adaptive design and a PK-PD modeling approach were used to determine prospectively the MIC of the new antimalarial cipargamin (KAE609) in adults with uncomplicated Plasmodium falciparum malaria in an open-label, dose-ranging phase 2a study. Vietnamese adults with acute P. falciparum malaria were allocated sequentially to treatment with a single 30-mg (n = 6), 20-mg (n = 5), 10-mg (n = 7), or 15-mg (n = 7) dose of cipargamin. Artemisinin-based combination therapy was given after parasite densities had fallen and then risen as cipargamin levels declined below the MIC but before a return of signs or symptoms. The rates of parasite clearance were dose dependent, with near saturation of the effect being seen at an adult dose of 30 mg. The developed PK-PD model accurately predicted the therapeutic responses in 23/25 patients. The predicted median in vivo MIC was 0.126 ng/ml (range, 0.038 to 0.803 ng/ml). Pharmacometric characterization of the relationship between antimalarial drug concentrations and parasite clearance rates following graded subtherapeutic antimalarial drug dosing is safe and provides a rational framework for dose finding in antimalarial drug development. (This study has been registered at ClinicalTrials.gov under identifier NCT01836458.).


Assuntos
Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Indóis/farmacocinética , Indóis/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Compostos de Espiro/farmacocinética , Compostos de Espiro/uso terapêutico , Adulto , Antimaláricos/efeitos adversos , Povo Asiático , Humanos , Indóis/efeitos adversos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Compostos de Espiro/efeitos adversos , Adulto Jovem
14.
Nat Genet ; 47(3): 226-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25599401

RESUMO

We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Genoma de Protozoário , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Resistência a Medicamentos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Polimorfismo de Nucleotídeo Único
15.
N Engl J Med ; 371(5): 411-23, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25075834

RESUMO

BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.).


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , África Subsaariana , Antimaláricos/farmacologia , Artemisininas/farmacologia , Sudeste Asiático , Criança , Pré-Escolar , Humanos , Lactente , Pessoa de Meia-Idade , Análise Multivariada , Carga Parasitária , Parasitemia/tratamento farmacológico , Parasitemia/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Mutação Puntual , Adulto Jovem
16.
Malar J ; 11: 355, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101492

RESUMO

BACKGROUND: By 2009, there were worrying signs from western Cambodia that parasitological responses to artesunate-containing treatment regimens for uncomplicated Plasmodium falciparum malaria were slower than elsewhere which suggested the emergence of artemisinin resistance. Vietnam shares a long land border with Cambodia with a large number of migrants crossing it on a daily basis. Therefore, there is an urgent need to investigate whether there is any evidence of a change in the parasitological response to the artemisinin derivatives in Vietnam. METHODS: From August 2010 to May 2011, a randomized controlled clinical trial in uncomplicated falciparum malaria was conducted to compare two doses of artesunate (AS) (2mg/kg/day versus 4 mg/kg/day for three days) followed by dihydroartemisinin-piperaquine (DHA-PPQ) and a control arm of DHA-PPQ. The goal was characterization of the current efficacy of artesunate in southern Vietnam. The primary endpoint of this study was the parasite clearance half-life; secondary endpoints included the parasite reduction ratios at 24 and 48 hours and the parasite clearance time. RESULTS: 166 patients were recruited into the study. The median parasite clearance half-lives were 3.54 (AS 2mg/kg), 2.72 (AS 4mg/kg), and 2.98 hours (DHA-PPQ) (p=0.19). The median parasite-reduction ratio at 24 hours was 48 in the AS 2mg/kg group compared with 212 and 113 in the other two groups, respectively (p=0.02). The proportions of patients with a parasite clearance time of >72 hours for AS 2mg/kg, AS 4mg/kg and DHA-PPQ were 27%, 27%, and 22%, respectively. Early treatment failure occurred in two (4%) and late clinical failure occurred in one (2%) of the 55 patients in the AS 2mg/kg group, as compared with none in the other two study arms. The PCR-corrected adequate clinical and parasitological response (APCR) rates in the three groups were 94%, 100%, and 100% (p=0.04). CONCLUSIONS: This study demonstrated faster P. falciparum parasite clearance in southern Vietnam than in western Cambodia but slower clearance in comparison with historical data from Vietnam. Further studies to determine whether this represents the emergence of artemisinin resistance in this area are needed. Currently, the therapeutic response to DHA-PPQ remains satisfactory in southern Vietnam. TRIAL REGISTRATION: NTC01165372.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Artesunato , Criança , Feminino , Humanos , Masculino , Plasmodium falciparum/isolamento & purificação , Quinolinas/administração & dosagem , Resultado do Tratamento , Vietnã , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA