Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dev Cell ; 59(4): 496-516.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38228141

RESUMO

The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.


Assuntos
Cicatriz , Pavilhão Auricular , Animais , Cicatriz/patologia , Lactoferrina , Pavilhão Auricular/patologia , Macrófagos/patologia , Murinae/fisiologia
2.
Nucleic Acids Res ; 50(W1): W623-W632, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35552456

RESUMO

The Orthology Benchmark Service (https://orthology.benchmarkservice.org) is the gold standard for orthology inference evaluation, supported and maintained by the Quest for Orthologs consortium. It is an essential resource to compare existing and new methods of orthology inference (the bedrock for many comparative genomics and phylogenetic analysis) over a standard dataset and through common procedures. The Quest for Orthologs Consortium is dedicated to maintaining the resource up to date, through regular updates of the Reference Proteomes and increasingly accessible data through the OpenEBench platform. For this update, we have added a new benchmark based on curated orthology assertion from the Vertebrate Gene Nomenclature Committee, and provided an example meta-analysis of the public predictions present on the platform.


Assuntos
Benchmarking , Genômica , Filogenia , Genômica/métodos , Proteoma
3.
Nucleic Acids Res ; 50(D1): D765-D770, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34634797

RESUMO

The COVID-19 pandemic has seen unprecedented use of SARS-CoV-2 genome sequencing for epidemiological tracking and identification of emerging variants. Understanding the potential impact of these variants on the infectivity of the virus and the efficacy of emerging therapeutics and vaccines has become a cornerstone of the fight against the disease. To support the maximal use of genomic information for SARS-CoV-2 research, we launched the Ensembl COVID-19 browser; the first virus to be encompassed within the Ensembl platform. This resource incorporates a new Ensembl gene set, multiple variant sets, and annotation from several relevant resources aligned to the reference SARS-CoV-2 assembly. Since the first release in May 2020, the content has been regularly updated using our new rapid release workflow, and tools such as the Ensembl Variant Effect Predictor have been integrated. The Ensembl COVID-19 browser is freely available at https://covid-19.ensembl.org.


Assuntos
COVID-19/virologia , Bases de Dados Genéticas , SARS-CoV-2/genética , Navegador , Coronaviridae/genética , Variação Genética , Genoma Viral , Humanos , Anotação de Sequência Molecular
4.
Nat Commun ; 11(1): 3695, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728065

RESUMO

Pseudogenes are ideal markers of genome remodelling. In turn, the mouse is an ideal platform for studying them, particularly with the recent availability of strain-sequencing and transcriptional data. Here, combining both manual curation and automatic pipelines, we present a genome-wide annotation of the pseudogenes in the mouse reference genome and 18 inbred mouse strains (available via the mouse.pseudogene.org resource). We also annotate 165 unitary pseudogenes in mouse, and 303, in human. The overall pseudogene repertoire in mouse is similar to that in human in terms of size, biotype distribution, and family composition (e.g. with GAPDH and ribosomal proteins being the largest families). Notable differences arise in the pseudogene age distribution, with multiple retro-transpositional bursts in mouse evolutionary history and only one in human. Furthermore, in each strain about a fifth of all pseudogenes are unique, reflecting strain-specific evolution. Finally, we find that ~15% of the mouse pseudogenes are transcribed, and that highly transcribed parent genes tend to give rise to many processed pseudogenes.


Assuntos
Pseudogenes/genética , Transcrição Gênica , Animais , Sequência Conservada/genética , Evolução Molecular , Ontologia Genética , Genoma , Humanos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Especificidade da Espécie
5.
Environ Microbiome ; 15(1): 20, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33902728

RESUMO

Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.

6.
Genome Res ; 28(11): 1720-1732, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30341161

RESUMO

Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Mapeamento de Sequências Contíguas/normas , Camundongos , Padrões de Referência , Sequenciamento Completo do Genoma/normas
7.
Genome Res ; 28(4): 448-459, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29563166

RESUMO

Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.


Assuntos
Evolução Molecular , Genoma/genética , Muridae/genética , Filogenia , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Cromossomos/genética , Cariotipagem/métodos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Retroelementos/genética , Especificidade da Espécie
8.
BMC Genomics ; 18(1): 986, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29272997

RESUMO

BACKGROUND: The genomes of laboratory rat strains are characterised by a mosaic haplotype structure caused by their unique breeding history. These mosaic haplotypes have been recently mapped by extensive sequencing of key strains. Comparison of genomic variation between two closely related rat strains with different phenotypes has been proposed as an effective strategy for the discovery of candidate strain-specific regions involved in phenotypic differences. We developed a method to prioritise strain-specific haplotypes by integrating genomic variation and genomic regulatory data predicted to be involved in specific phenotypes. Specifically, we aimed to identify genomic regions associated with Metabolic Syndrome (MetS), a disorder of energy utilization and storage affecting several organ systems. RESULTS: We compared two Lyon rat strains, Lyon Hypertensive (LH) which is susceptible to MetS, and Lyon Low pressure (LL), which is susceptible to obesity as an intermediate MetS phenotype, with a third strain (Lyon Normotensive, LN) that is resistant to both MetS and obesity. Applying a novel metric, we ranked the identified strain-specific haplotypes using evolutionary conservation of the occupancy three liver-specific transcription factors (HNF4A, CEBPA, and FOXA1) in five rodents including rat. Consideration of regulatory information effectively identified regions with liver-associated genes and rat orthologues of human GWAS variants related to obesity and metabolic traits. We attempted to find possible causative variants and compared them with the candidate genes proposed by previous studies. In strain-specific regions with conserved regulation, we found a significant enrichment for published evidence to obesity-one of the metabolic symptoms shown by the Lyon strains-amongst the genes assigned to promoters with strain-specific variation. CONCLUSIONS: Our results show that the use of functional regulatory conservation is a potentially effective approach to select strain-specific genomic regions associated with phenotypic differences among Lyon rats and could be extended to other systems.


Assuntos
Variação Genética , Genoma , Elementos Reguladores de Transcrição , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Haplótipos , Humanos , Fígado/metabolismo , Síndrome Metabólica/genética , Fenótipo , Mapas de Interação de Proteínas , Ratos , Ratos Endogâmicos , Especificidade da Espécie , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 8(1): 1092, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061983

RESUMO

Noncoding regulatory variants play a central role in the genetics of human diseases and in evolution. Here we measure allele-specific transcription factor binding occupancy of three liver-specific transcription factors between crosses of two inbred mouse strains to elucidate the regulatory mechanisms underlying transcription factor binding variations in mammals. Our results highlight the pre-eminence of cis-acting variants on transcription factor occupancy divergence. Transcription factor binding differences linked to cis-acting variants generally exhibit additive inheritance, while those linked to trans-acting variants are most often dominantly inherited. Cis-acting variants lead to local coordination of transcription factor occupancies that decay with distance; distal coordination is also observed and may be modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms that interplay to drive transcription factor occupancy, chromatin state, and gene expression in complex mammalian cell states.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Cromatina/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Humanos , Camundongos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Fatores de Transcrição/genética
10.
Genetics ; 204(1): 267-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27371833

RESUMO

Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.


Assuntos
Evolução Biológica , Duplicação Gênica , Proteínas Nucleares/genética , Duplicações Segmentares Genômicas , Alelos , Animais , Animais Selvagens/genética , Evolução Molecular , Conversão Gênica , Dosagem de Genes , Genes Duplicados , Variação Genética , Camundongos , Filogenia , Proteínas de Ligação a RNA
11.
PLoS One ; 10(9): e0137367, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339903

RESUMO

Phenotypic differences between species are driven by changes in gene expression and, by extension, by modifications in the regulation of the transcriptome. Investigation of mammalian transcriptome divergence has been restricted to analysis of bulk gene expression levels and gene-internal splicing. Using allele-specific expression analysis in inter-strain hybrids of Mus musculus, we determined the contribution of multiple cellular regulatory systems to transcriptome divergence, including: alternative promoter usage, transcription start site selection, cassette exon usage, alternative last exon usage, and alternative polyadenylation site choice. Between mouse strains, a fifth of genes have variations in isoform usage that contribute to transcriptomic changes, half of which alter encoded amino acid sequence. Virtually all divergence in isoform usage altered the post-transcriptional regulatory instructions in gene UTRs. Furthermore, most genes with isoform differences between strains contain changes originating from multiple regulatory systems. This result indicates widespread cross-talk and coordination exists among different regulatory systems. Overall, isoform usage diverges in parallel with and independently to gene expression evolution, and the cis and trans regulatory contribution to each differs significantly.


Assuntos
Elementos Facilitadores Genéticos , Camundongos/genética , RNA Mensageiro/genética , Transcriptoma , Alelos , Processamento Alternativo , Animais , Quimera/genética , Evolução Molecular , Éxons , Feminino , Masculino , Camundongos/classificação , Fenótipo , Poliadenilação , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
12.
Genome Res ; 25(2): 167-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25394363

RESUMO

To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA expression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Imunoprecipitação da Cromatina , Evolução Molecular , Variação Genética , Fator 4 Nuclear de Hepatócito/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Knockout , Modelos Estatísticos , Ligação Proteica , Especificidade da Espécie , Sítio de Iniciação de Transcrição , Transcrição Gênica
13.
Dev Cell ; 28(4): 351-65, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24576421

RESUMO

Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA-sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs, respectively, a 5.6-fold increase upon differentiation. Although DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation and, for some genes, is compensated for by the cell to maintain the required transcriptional output of these genes.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Expressão Gênica/genética , Alelos , Animais , Linhagem Celular , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Cromossomos/genética , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA/métodos
14.
Cell ; 154(3): 530-40, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911320

RESUMO

To mechanistically characterize the microevolutionary processes active in altering transcription factor (TF) binding among closely related mammals, we compared the genome-wide binding of three tissue-specific TFs that control liver gene expression in six rodents. Despite an overall fast turnover of TF binding locations between species, we identified thousands of TF regions of highly constrained TF binding intensity. Although individual mutations in bound sequence motifs can influence TF binding, most binding differences occur in the absence of nearby sequence variations. Instead, combinatorial binding was found to be significant for genetic and evolutionary stability; cobound TFs tend to disappear in concert and were sensitive to genetic knockout of partner TFs. The large, qualitative differences in genomic regions bound between closely related mammals, when contrasted with the smaller, quantitative TF binding differences among Drosophila species, illustrate how genome structure and population genetics together shape regulatory evolution.


Assuntos
Evolução Molecular , Camundongos/classificação , Camundongos/genética , Fatores de Transcrição/genética , Animais , Drosophila/genética , Fígado/metabolismo , Camundongos/metabolismo , Camundongos Endogâmicos , Camundongos Knockout , Ratos/genética , Fatores de Transcrição/metabolismo
15.
Mol Cell ; 49(2): 262-72, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23246434

RESUMO

At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it.


Assuntos
Cromossomos Humanos Par 21/genética , Elementos de DNA Transponíveis , Inativação Gênica , Ativação Transcricional , Animais , Cromossomos Humanos Par 21/metabolismo , Metilação de DNA , Feminino , Histonas/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Ligação Proteica , Especificidade da Espécie , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
16.
Genome Res ; 22(12): 2376-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22919075

RESUMO

Gene expression levels are thought to diverge primarily via regulatory mutations in trans within species, and in cis between species. To test this hypothesis in mammals we used RNA-sequencing to measure gene expression divergence between C57BL/6J and CAST/EiJ mouse strains and allele-specific expression in their F1 progeny. We identified 535 genes with parent-of-origin specific expression patterns, although few of these showed full allelic silencing. This suggests that the number of imprinted genes in a typical mouse somatic tissue is relatively small. In the set of nonimprinted genes, 32% showed evidence of divergent expression between the two strains. Of these, 2% could be attributed purely to variants acting in trans, while 43% were attributable only to variants acting in cis. The genes with expression divergence driven by changes in trans showed significantly higher sequence constraint than genes where the divergence was explained by variants acting in cis. The remaining genes with divergent patterns of expression (55%) were regulated by a combination of variants acting in cis and variants acting in trans. Intriguingly, the changes in expression induced by the cis and trans variants were in opposite directions more frequently than expected by chance, implying that compensatory regulation to stabilize gene expression levels is widespread. We propose that expression levels of genes regulated by this mechanism are fine-tuned by cis variants that arise following regulatory changes in trans, suggesting that many cis variants are not the primary targets of natural selection.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos/genética , Alelos , Animais , Ritmo Circadiano/genética , Feminino , Impressão Genômica , Masculino , Camundongos , Modelos Moleculares , Fenótipo , Análise de Sequência de RNA/métodos
17.
BMC Microbiol ; 11: 105, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575179

RESUMO

BACKGROUND: Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION: SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS: SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.


Assuntos
Bases de Dados Genéticas , Oxirredutases/genética , Oxirredutases/química , Oxirredutases/classificação , Estrutura Terciária de Proteína
18.
PLoS One ; 6(4): e19094, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21544207

RESUMO

Class A G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors in the human genome. Understanding the mechanisms which drove the evolution of such a large family would help understand the specificity of each GPCR sub-family with applications to drug design. To gain evolutionary information on class A GPCRs, we explored their sequence space by metric multidimensional scaling analysis (MDS). Three-dimensional mapping of human sequences shows a non-uniform distribution of GPCRs, organized in clusters that lay along four privileged directions. To interpret these directions, we projected supplementary sequences from different species onto the human space used as a reference. With this technique, we can easily monitor the evolutionary drift of several GPCR sub-families from cnidarians to humans. Results support a model of radiative evolution of class A GPCRs from a central node formed by peptide receptors. The privileged directions obtained from the MDS analysis are interpretable in terms of three main evolutionary pathways related to specific sequence determinants. The first pathway was initiated by a deletion in transmembrane helix 2 (TM2) and led to three sub-families by divergent evolution. The second pathway corresponds to the differentiation of the amine receptors. The third pathway corresponds to parallel evolution of several sub-families in relation with a covarion process involving proline residues in TM2 and TM5. As exemplified with GPCRs, the MDS projection technique is an important tool to compare orthologous sequence sets and to help decipher the mutational events that drove the evolution of protein families.


Assuntos
Evolução Molecular , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/genética , Humanos
19.
BMC Genomics ; 9: 637, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19117520

RESUMO

BACKGROUND: Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. DESCRIPTION: In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. CONCLUSION: OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software.


Assuntos
Genoma Arqueal , Genoma Bacteriano , Estresse Oxidativo , Software , Bases de Dados Genéticas , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA