Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(26): e2401875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598692

RESUMO

The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices.

2.
Adv Mater ; 36(16): e2311327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221508

RESUMO

Severe capacity decay under subzero temperatures remains a significant challenge for lithium-ion batteries (LIBs) due to the sluggish interfacial kinetics. Current efforts to mitigate this deteriorating interfacial behavior rely on high-solubility lithium salts (e.g., Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium bis(fluorosulfonyl)imide (LiFSI))-based electrolytes to construct anion participated solvation structures. However, such electrolytes bring issues of corrosion on the current collector and increased costs. Herein, the most commonly used Lithium hexafluorophosphate (LiPF6) instead, to establish a peculiar solvation structure with a high ratio of ion pairs and aggregates by introducing a deshielding NO3 - additive for low-temperature LIBs is utilized. The deshielding anion significantly reduces the energy barrier for interfacial behavior at low temperatures. Benefiting from this, the graphite (Gr) anode retains a high capacity of ≈72.3% at -20 °C, which is far superior to the 32.3% and 19.4% capacity retention of counterpart electrolytes. Moreover, the LiCoO2/Gr full cell exhibits a stable cycling performance of 100 cycles at -20 °C due to the inhibited lithium plating. This work heralds a new paradigm in LiPF6-based electrolyte design for LIBs operating at subzero temperatures.

3.
ACS Appl Mater Interfaces ; 16(1): 1535-1542, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134330

RESUMO

The interfacial problem caused by solid-solid contact is an important issue faced by a solid-state electrolyte (SSE). Herein, a cross-linked composite solid electrolyte (CSE) poly(vinylene carbonate) (PVCA)─ethoxylated trimethylolpropane triacrylate (ETPTA)─Li1.5Al0.5Ge1.5(PO4)3 (LAGP) (PEL) is prepared by in situ thermal polymerization. The ionic conductivity and Li+ transference number (tLi+) of PEL increase significantly due to the addition of LAGP, which can reach 1.011 × 10-4 S cm-1 and 0.451 respectively. The electrochemical stable window is also widened to 4.68 V. Benefiting from the integrated interfacial structure, the assembled coin cell shows low interfacial resistance. The all-solid-state NCM622|PEL|Li coin cell exhibits an initial discharge capacity of 169.7 mA h g-1 and 70% capacity retention over 100 cycles at 0.2 C, demonstrating excellent cycling stability.

4.
ACS Appl Mater Interfaces ; 15(16): 20159-20165, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053470

RESUMO

For lithium-oxygen batteries (LOBs), the leakage and volatilization of a liquid electrolyte and its poor electrochemical performance are the main reasons for the slow industrial advancement. Searching for more stable electrolyte substrates and reducing the use of liquid solvents are crucial to the development of LOBs. In this work, a well-designed succinonitrile-based (SN) gel polymer electrolyte (GPE-SLFE) is prepared by in situ thermal cross-linking of an ethoxylate trimethylolpropane triacrylate (ETPTA) monomer. The continuous Li+ transfer channel, formed by the synergistic effect of an SN-based plastic crystal electrolyte and an ETPTA polymer network, endows the GPE-SLFE with a high room-temperature ionic conductivity (1.61 mS cm-1 at 25 °C), a high lithium-ion transference number (tLi+ = 0.489), and excellent long-term stability of the Li/GPE-SLFE/Li symmetric cell at a current density of 0.1 mA cm-2 for over 220 h. Furthermore, cells with the GPE-SLFE exhibit a high discharge specific capacity of 4629.7 mAh g-1 and achieve 40 cycles.

5.
ACS Appl Mater Interfaces ; 14(3): 4170-4178, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029962

RESUMO

Lithium-ion batteries (LIBs) with liquid electrolytes (LEs) have problems such as electrolyte leakage, low safety profiles, and low energy density, which limit their further development. However, LIBs with solid electrolytes are safer with better energy and high-temperature performance. Thus, solid electrolyte system batteries have attracted widespread attention. However, due to the inherent rigidity of the LATP solid electrolyte, there is a high interface impedance at the LATP/electrode. In addition, the Ti element in LATP easily reacts with the Li metal. Here, we dripped an LE at the LATP/electrode interface (solid-liquid hybrid electrolytes) to reduce its interface impedance. A composite polymer electrolyte (CPE) protective film (containing PVDF, SN, and LiTFSI) was then cured in situ at the LATP/Li interface to avoid side reactions of LATP. The discharge specific capacity of the LiFePO4/LATP-12% LE-CPE/Li system is up to 150 mAh g-1, and the capacity retention rate is still 96% after 250 cycles. In addition, the NCM622/PVDF-LATP-12% LE/Li system has an initial reversible capacity of 170 mAh g-1. This study reports an approach that can protect solid electrolytes from lithium metal instability.

6.
EXCLI J ; 19: 1124-1140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088250

RESUMO

Unlike conventional materials that covalent bonds connecting atoms as the major force to hold the materials together, supramolecular biomaterials rely on noncovalent intermolecular interactions to assemble. The reversibility and biocompatibility of supramolecular biomaterials render them with diverse range of functions and lead to rapid development in the past two decades. This review focuses on the noncovalent and enzymatic control of supramolecular biomaterials, with the introduction to various triggering mechanism to initiate self-assembly. Representative applications of supramolecular biomaterials are highlighted in four categories: tissue engineering, cancer therapy, drug delivery, and molecular imaging. By introducing various applications, we intend to show enzymatic control and noncovalent interactions as a powerful tool for achieving spatiotemporal control of biomaterials both in vitro and in vivo for biomedicine.

7.
Nat Commun ; 11(1): 2670, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471993

RESUMO

The assembly of active and self-propelled particles is an emerging strategy to create dynamic materials otherwise impossible. However, control of the complex particle interactions remains challenging. Here, we show that various dynamic interactions of active patchy particles can be orchestrated by tuning the particle size, shape, composition, etc. This capability is manifested in establishing dynamic colloidal bonds that are highly selective and directional, which greatly expands the spectrum of colloidal structures and dynamics by assembly. For example, we demonstrate the formation of colloidal molecules with tunable bond angles and orientations. They exhibit controllable propulsion, steering, reconfiguration as well as other dynamic behaviors that collectively reflect the bond properties. The working principle is further extended to the co-assembly of synthetic particles with biological entities including living cells, giving rise to hybrid colloidal molecules of various types, for example, a colloidal carrousel structure. Our strategy should enable active systems to perform sophisticated tasks in future such as selective cell treatment.


Assuntos
Coloides/química , Condutividade Elétrica , Interações de Partículas Elementares , Escherichia coli/química , Ciência dos Materiais/métodos , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Leveduras/química
8.
J Am Chem Soc ; 141(37): 14853-14863, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31448592

RESUMO

Controlling the complex dynamics of active colloids-the autonomous locomotion of colloidal particles and their spontaneous assembly-is challenging yet crucial for creating functional, out-of-equilibrium colloidal systems potentially useful for nano- and micromachines. Herein, by introducing the synthesis of active "patchy" colloids of various low-symmetry shapes, we demonstrate that the dynamics of such systems can be precisely tuned. The low-symmetry patchy colloids are made in bulk via a cluster-encapsulation-dewetting method. They carry essential information encoded in their shapes (particle geometry, number, size, and configurations of surface patches, etc.) that programs their locomotive and assembling behaviors. Under AC electric field, we show that the velocity of particle propulsion and the ability to brake and steer can be modulated by having two asymmetrical patches with various bending angles. The assembly of monopatch particles leads to the formation of dynamic and reconfigurable structures such as spinners and "cooperative swimmers" depending on the particle's aspect ratios. A particle with two patches of different sizes allows for "directional bonding", a concept popular in static assemblies but rare in dynamic ones. With the capability to make tunable and complex shapes, we anticipate the discovery of a diverse range of new dynamics and structures when other external stimuli (e.g., magnetic, optical, chemical, etc.) are employed and spark synergy with shapes.

9.
Front Chem ; 6: 613, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619822

RESUMO

Perylene diimide (PDI) derivatives as a kind of promising non-fullerene-based acceptor (NFA) have got rapid development. However, most of the relevant developmental work has focused on synthesizing novel PDI-based structures, and few paid attentions to the selection of the polymer donor in PDI-based solar cells. Wide bandgap polymer (PBDB-T) and narrow bandgap polymer (PBDTTT-EFT) are known as the most efficient polymer donors in polymer solar cells (PSCs). While PBDB-T is in favor with non-fullerene acceptors achieving power conversion efficiency (PCE) more than 12%, PBDTTT-EFT is one of the best electron donors with fullerene acceptors with PCE up to 10%. Despite the different absorption profiles, the working principle of these benchmark polymer donors with a same electron acceptor, specially PDI-based acceptors, was rarely compared. To this end, we used PBDB-T and PBDTTT-EFT as the electron donors, and 1,1'-bis(2-methoxyethoxyl)-7,7'-(2,5-thienyl) bis-PDI (Bis-PDI-T-EG) as the electron acceptor to fabricate PSCs, and systematically compared their differences in device performance, carrier mobility, recombination mechanism, and film morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA