Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 252: 114568, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696728

RESUMO

Citrinin, a mycotoxin existing in fruits, has nephrotoxicity, hepatotoxicity and embryotoxicity. The effects of citrinin on Leydig cell development in prepuberty remains unclear. Male Sprague-Dawley rats were gavaged with 0, 1, 2.5, and 5 mg/kg citrinin from postnatal days 21-28. Citrinin at 5 mg/kg significantly decreased serum testosterone levels, while increasing serum LH and FSH levels. Citrinin at 1-5 mg/kg markedly downregulated Hsd17b3 and HSD17B3 expression, while upregulating Srd5a1 (SRD5A1) and Akr1c14 (AKR1C14) expression at 2.5 and/or 5 mg/kg. Citrinin at 5 mg/kg also significantly increased PCNA-labeling index in Leydig cells. Citrinin at 5 mg/kg significantly raised testicular MDA amount, whiling at 2.5 and 5 mg/kg downregulating SOD1 and SOD2 expression. Citrinin at 5 mg/kg markedly decreased the ratio of Bcl2 to Bax, in consistent with the increased apoptosis in Leydig cells judged by TUNEL assay. Enzymatic assay revealed that citrinin inhibited rat testicular HSD3B1 activity at 100 µM and HSD17B3 activity at 10-100 µM. Citrinin at 50 µM and higher also induced reactive oxygen species (ROS) and apoptosis of R2C cell line. In conclusion, citrinin inhibits Leydig cell development at multiple levels via different mechanisms and oxidative stress partially plays a role.


Assuntos
Citrinina , Células Intersticiais do Testículo , Ratos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Ratos Sprague-Dawley , Citrinina/toxicidade , Citrinina/metabolismo , Testículo , Diferenciação Celular , Testosterona
2.
J Steroid Biochem Mol Biol ; 225: 106202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241036

RESUMO

Human 3ß-hydroxysteroid dehydrogenase type I (HSD3B1) and rat type IV (HSD3B4) in placentas catalyze the conversion of pregnenolone to progesterone, which plays a key role in maintaining pregnancy. Many phenolic compounds potentially inhibit HSD3B in placentas as endocrine disruptors. In this study, the effects of 16 phenolic compounds on the activity of human HSD3B1 and rat HSD3B4 were determined and the structure-activity relationship was compared. HSD3B1 in human placental microsomes and HSD3B4 in rat placental microsomes were used to measure their activities and pregnenolone and NAD+ were used as substrates. Of the 16 phenolic compounds, 4-nonylphenol, pentabromophenol, and 2-bromophenol resulted in residual human HSD3B1 activity lower than 50 % and 4-nonylphenol and pentabromophenol resulted in residual rat HSD3B4 activity lower than 50 %. 4-Nonylphenol, pentabromophenol, and 2-bromophenol were mixed inhibitors of human HSD3B1, with Ki values of 2.31, 3.58 and 4.86 µM, respectively, while 4-nonylphenol and pentabromophenol were noncompetitive inhibitors of rat HSD3B4 with Ki values of 20.86 and 141.8 µM. Molecular docking showed that 4-nonylphenol, pentabromophenol, and 2-bromophenol docked to the active sites of human HSD3B1 and rat HSD3B4, and the shift of residue S125 in human HSD3B1 to T125 in rat HSD3B4 could explain the species-dependent difference in their inhibitory potency and mode of action. This study demonstrates that 4-nonylphenol, pentabromophenol, and 2-bromophenol are mixed inhibitors of human placental HSD3B1, while 4-nonylphenol and pentabromophenol are noncompetitive inhibitors of rat HSD3B4, possibly blocking the placental steroidogenesis.


Assuntos
Complexos Multienzimáticos , Placenta , Humanos , Feminino , Gravidez , Ratos , Animais , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/farmacologia , Pregnenolona/farmacologia , 3-Hidroxiesteroide Desidrogenases
3.
Chem Biol Interact ; 369: 110292, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470526

RESUMO

Many insecticides and fungicides are endocrine-disrupting compounds, which possibly interfere with the placental endocrine system. In the placenta, 3ß-hydroxysteroid dehydrogenase/Δ5,4-isomerase type 1 (HSD3B1) is the major steroidogenic enzyme, which makes progesterone from pregnenolone to support the placental stability. In this study, we screened 12 classes of insecticides and fungicides to inhibit placental HSD3B1 activity and compared them to the rat homolog type 4 (HSD3B4) isoform. Human HSD3B1 activity and rat HSD3B4 activity were measured in the presence of 200 nM pregnenolone and 0.2 mM NAD+ and 100 µM of test chemical. Triclosan, triflumizole, dichlone, and oxine at 100 µM significantly inhibited human HSD3B1 activity with the residual activity being less than 50% of the control. Further study showed that the half-maximal inhibitory concentration (IC50) values of triclosan, triflumizole, dichlone, and oxine were 85.53 ± 9.14, 73.75 ± 3.42, 2.54 ± 0.40, and 102.93 ± 6.10 µM, respectively. In the presence of pregnenolone, triclosan, triflumizole, and dichlone were mixed inhibitors of HSD3B1, while oxine was a noncompetitive inhibitor. In the presence of NAD+, triclosan exhibited competitive inhibition while triflumizole possessed uncompetitive inhibition. Docking analysis showed that triclosan bound NAD+-binding site, while triflumizole, dichlone, and oxine mostly bound steroid-binding site. When the effect of these insecticides on rat placental HSD3B4 activity was screened in the presence of 200 nM pregnenolone, atrazine, triclosan, triflumizole, oxine, cyprodinil, and diphenyltin at 100 µM significantly inhibited rat HSD3B4 activity, with IC50 values of triclosan, triflumizole, oxine, and cyprodinil were 82.99 ± 6.48, 35.45 ± 2.73, 105.59 ± 12.04, and 43.37 ± 3.00 µM, respectively. The mode action analysis showed that triflumizole and cyprodinil were almost competitive inhibitors, while triclosan and oxine were almost noncompetitive inhibitors of rat HSD3B4. Docking analysis showed that triclosan and oxine bound cofactor NAD+ binding residues more than steroid-binding residues of rat HSD3B4 while triflumizole and cyprodinil bound most pregnenolone-interactive residues. In conclusion, some insecticides such as triclosan, triflumizole, and oxine can effectively inhibit both human and rat placental HSD3B activity and they have unique mode action due to the structure difference.


Assuntos
Fungicidas Industriais , Inseticidas , Triclosan , Humanos , Gravidez , Feminino , Ratos , Animais , Placenta , Inseticidas/toxicidade , Inseticidas/metabolismo , Fungicidas Industriais/farmacologia , NAD/metabolismo , Triclosan/metabolismo , Triclosan/farmacologia , Isomerases/metabolismo , Isomerases/farmacologia , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Complexos Multienzimáticos
4.
Toxicol Appl Pharmacol ; 456: 116262, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36198370

RESUMO

Testicular dysgenesis syndrome in male neonates manifests as cryptorchidism and hypospadias, which can be mimicked by in utero phthalate exposure. However, the underlying phthalate mediated mechanism and therapeutic effects of taxifolin remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundantly used phthalate and can induce testicular dysgenesis syndrome in male rats. To explore the mechanism of DEHP mediated effects and develop a therapeutic drug, the natural phytomedicine taxifolin was used. Pregnant Sprague-Dawley female rats were daily gavaged with 750 mg/kg/d DEHP or 10 or 20 mg/kg/d taxifolin alone or in combination from gestational day 14 to 21, and male pup's fetal Leydig cell function, testicular MDA, and antioxidants were examined. DEHP significantly reduced serum testosterone levels of male pups, down-regulated the expression of SCARB1, CYP11A1, HSD3B1, HSD17B3, and INSL3, reduced the cell size of fetal Leydig cells, decreased the levels of antioxidant and related signals (SOD2 and CAT, SIRT1, and PGC1α), induced abnormal aggregation of fetal Leydig cells, and stimulated formation of multinucleated gonocytes and MDA levels. Taxifolin alone (10 and 20 mg/kg/d) did not affect these parameters. However, taxifolin significantly rescued DEHP-induced alterations. DEHP exposure in utero can induce testicular dysgenesis syndrome by altering the oxidative balance and SIRT1/PGC1α levels, and taxifolin is an ideal phytomedicine to prevent phthalate induced testicular dysgenesis syndrome.


Assuntos
Dietilexilftalato , Doenças Testiculares , Gravidez , Humanos , Ratos , Masculino , Feminino , Animais , Dietilexilftalato/toxicidade , Animais Recém-Nascidos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Testosterona/metabolismo , Sirtuína 1/metabolismo , Ratos Sprague-Dawley , Células Intersticiais do Testículo , Testículo , Doenças Testiculares/induzido quimicamente , Doenças Testiculares/prevenção & controle , Doenças Testiculares/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
5.
Toxicol Lett ; 366: 58-71, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810996

RESUMO

Dimethylbisphenol A (DMBPA) is a novel alternative to bisphenol A. Whether short-term exposure to DMBPA affects Leydig cell regeneration remains unknown. The Leydig cell regeneration model was generated by intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to adult male Sprague-Dawley rats. Leydig cell regeneration began on day 14 after EDS. Rats were gavaged with 0, 10, 50, or 200 mg/kg DMBPA from days 14-28 post-EDS, and Leydig cell regeneration was assessed on days 28 and 56 post-EDS. DMBPA significantly reduced serum testosterone levels on days 28 and 56 at 10 mg/kg and higher doses and sperm count in the caudal epididymis on day 56 at 200 mg/kg, without affecting estradiol, luteinizing hormone, and follicle-stimulating hormone. DMBPA had no effect on Leydig cell number but significantly down-regulated Scarb1 expression at ≥ 10 mg/kg on day 28, Cyp17a1 expression on day 28 at 200 mg/kg and on day 56 at ≥ 10 mg/kg. DMBPA markedly upregulated Srd5a1 expression at doses of 50 and 200 mg/kg on day 56 after EDS. DMBPA significantly down-regulated the expression of Sod1 and Nr3c4 at a dose of 200 mg/kg on day 28. Further semi-quantitative immunohistochemistry showed that DMBPA reduced NR3C4 levels in Leydig and Sertoli cells at 50 and 200 mg/kg. In vitro DMBPA treatment of immature Leydig cells for 24 h showed that it significantly reduced testosterone production at 10 and 50 µM, and further mechanistic studies showed that an NR3C4 agonist 7α-methyl-19-nortestosterone significantly reversed DMBPA-mediated suppression on testosterone output, but the estrogen receptor antagonist ICI 182,780 and G-coupled estrogen receptor 1 agonist G15 had no effect. In conclusion, DMBPA delays Leydig cell regeneration after short-term exposure during early Leydig cell regeneration via NR3C4 antagonism.


Assuntos
Compostos Benzidrílicos/farmacologia , Células Intersticiais do Testículo , Fenóis/farmacologia , Receptores Androgênicos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Sêmen , Testículo , Testosterona
6.
Food Chem Toxicol ; 167: 113268, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803362

RESUMO

Bisphenol F (BPF) is a new analog of bisphenol A (BPA). BPA has deleterious effects on the male reproductive system, but the effect of BPF has not been studied in detail. In this study we focus on the effect of BPF on Leydig cell maturation. Male Sprague-Dawley rats were gavaged with 0, 1, 10, or 100 mg/kg BPF from postnatal days 35-56. BPF significantly reduced serum testosterone levels and sperm count in cauda epididymis at dose ≥1 mg/kg. It significantly down-regulated the expression of steroidogenic enzymes, while increasing FSHR and SOX9 levels at 10 and 100 mg/kg. Further studies showed that BPF reduced NR3C4 expression in Leydig and Sertoli cells without affecting its levels in peritubular myoid cells. BPF markedly increased GPER1 in Leydig cells at 100 mg/kg, and it significantly reduced SIRT1 and PGC1α levels in the testes at 100 mg/kg. BPF significantly inhibited testosterone production by immature Leydig cells at 50 µM after 24 h of treatment, which was completely reversed by NR3C4 agonist 7α-methyl-19-nortestosterone and partially reversed by GPER1 antagonist G15 not by ESR1 antagonist ICI 182,780. In conclusion, BPF negatively affects Leydig cell maturation in pubertal male rats through NR3C4 antagonism and GPER1 agonism.


Assuntos
Células Intersticiais do Testículo , Receptores Androgênicos , Animais , Compostos Benzidrílicos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/farmacologia , Masculino , Fenóis , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Receptores Acoplados a Proteínas G , Sêmen/metabolismo , Testosterona/metabolismo
7.
Environ Toxicol ; 37(10): 2419-2433, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35762508

RESUMO

Phthalates may interfere with the biosynthesis of steroid hormones in the adrenal cortex. Bis (2-butoxyethyl) phthalate (BBOP) is a phthalate containing oxygen atoms in the alcohol moiety. In this study, 35-day-old male Sprague-Dawley rats were daily gavaged with BBOP (0, 10, 100, 250, and 500 mg/kg body weight) for 21 days. BBOP did not affect the weight of body and adrenal glands. BBOP significantly reduced serum corticosterone levels at 250 and 500 mg/kg, and lowered aldosterone level at 500 mg/kg without affecting adrenocorticotropic hormone. BBOP did not alter the thickness of the adrenal cortex. BBOP significantly down-regulated the expression of steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a1, and Nr4a2) and proteins, and antioxidant enzymes (Sod1, Sod2, Gpx1, and Cat) and their proteins, while up-regulating the expression of Mc2r and Agtr1a at various doses. BBOP reduced the phosphorylation of AKT1, AKT2, and ERK1/2, as well as the levels of SIRT1 and PGC1α without affecting the phosphorylation of AMPK. BBOP significantly induced the production of reactive oxygen species and apoptosis rate in H295R cells at 100 µM and higher after 24 h of treatment. In conclusion, male rats exposed to BBOP in puberty have significant reduction of steroid biosynthesis with a potential mechanism that is involved in the decrease in the phosphorylation of AKT1, AKT2, ERK1/2, as well as SIRT1 and PGC1α and increase in ROS.


Assuntos
Maturidade Sexual , Sirtuína 1 , Animais , Corticosterona/metabolismo , Masculino , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ácidos Ftálicos , Ratos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Fator Esteroidogênico 1/metabolismo , Esteroides
8.
Toxicol Appl Pharmacol ; 447: 116069, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605789

RESUMO

Bisphenol AF (BPAF) is one of the primary alternatives of bisphenol A. It has been ubiquitously detected in the environment and is an emerging endocrine disrupting compound. However, the effects of BPAF exposure on fetal Leydig cells and germ cells and the underlying mechanisms remain largely unknown. To this end, pregnant Sprague-Dawley rats were exposed to 10, 50, and 200 mg/kg/d BPAF by gavage from gestational days 14 to 21. The neonatal rats were sacrificed on day 1 at birth. The results showed that serum testosterone levels were significantly decreased at 50 and 200 mg/kg/d, the expression of Scarb1, Star, Cyp17a1, Hsd17b3, and Dhh and their proteins were markedly down-regulated at 50 and 100 mg/kg/d. BPAF exposure also significantly increased the incidence of multinucleated gonocytes at 200 mg/kg/d. We further detected significant increase of testicular malondialdehyde levels and reduction of antioxidants, including SOD1, SOD2, and CAT at 50 and/or 200 mg/kg/d. Furthermore, BPAF markedly reduced the levels of SIRT1 and PGC1α at 200 mg/kg/d while significantly increased AMPK phosphorylation in the testes at 50 and 200 mg/kg/d. In conclusion, our results provide novel in vivo data that BPAF can induce fetal Leydig cell dysfunction by interfering with steroidogenic networks and induce the formation of multinucleated gonocytes after suppressing the antioxidant defense system and reducing SIRT1 and PGC1α signals and increasing the phosphorylation of AMPK, which highlights the potential health risk of environmental exposure to BPAF in inducing male reproductive tract malformation.


Assuntos
Células Intersticiais do Testículo , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Compostos Benzidrílicos/farmacologia , Feminino , Fluorocarbonos , Células Germinativas/metabolismo , Masculino , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenóis , Gravidez , Ratos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Testículo , Testosterona
9.
Toxicol Appl Pharmacol ; 439: 115903, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143807

RESUMO

Perfluoroundecanoic acid (PFUnA), a perfluorinated compound, has environmental persistence, bioaccumulation, and potential toxicity. However, its effect on Leydig cell function remains unclear. Rats (age of 56 days) were gavaged with 0 (corn oil), 0.1, 0.5, 1, or 5 mg/kg/day PFUnA for 28 days. PFUnA significantly reduced serum testosterone levels as low as 0.5 mg/kg. PFUnA markedly decreased Leydig cell number as low as 0.1 mg/kg. PFUnA markedly reduced transcript levels of Star and Insl3 in the testes at 1 mg/kg after adjusting to Leydig cell number. It also reduced their protein levels. PFUnA significantly decreased the phosphorylation of AKT1 and mTOR as low as 0.1 mg/kg and the phosphorylation of ERK1/2 at 1 mg/kg and the phosphorylation of AKT1, AKT2, ERK1/2, and mTOR in Leydig cells at various concentrations (0.01-10 µM) after 24 h of in vitro treatment. In conclusion, PFUnA inhibits Leydig cell function possibly via AKT/ERK1/2/mTOR signaling pathways.


Assuntos
Fluorocarbonos , Células Intersticiais do Testículo , Animais , Ácidos Graxos , Fluorocarbonos/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Testículo/metabolismo , Testosterona
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 33(11): 1685-8, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24273279

RESUMO

OBJECTIVE: To investigate the protective effect of low-dose ketamine against intestinal ischemia reperfusion injury following pneumoperitoneum with carbon dioxide in rats. METHODS: Thirty healthy male adult SD rats (body weight 280-320 g) were randomized into sham-operated group, model group and ketamine group and subjected to pneumoperitoneum for 120 min with carbon dioxide (not in sham-operated group). The rats in ketamine group received an intraperitoneal injection of 10 mg/kg ketamine 10 min before pneumoperitoneum, and those in the other two groups received saline injection. Fifteen minutes after pneumoperitoneum or sham operation, the small intestines were sampled to detect the content of malondialdehyde (MDA) and fore pathological testing. ELISA was used to detect the serum levels of I-FABP, TNF-α IL-6 and IL-8. RESULTS: Pneumoperitoneum caused a significant increase in intestinal MDA content (P<0.05), which was lowered by ketamine pretreatment (P<0.05). Serum I-FABP, TNF-α, IL-6 and IL-8 levels all significantly increased following pneumoperitoneum (P<0.05) and were obviously lowered by ketamine pretreatment (P<0.05). Pneumoperitoneum also caused obvious pathologies in intestinal mucosa, which were ameliorated by ketamine pretreatment. CONCLUSION: Low-dose ketamine preconditioning can reduce the inflammatory reaction and lessen oxidative damage in the intestinal mucosa following pneumoperitoneum in rats.


Assuntos
Intestino Delgado/irrigação sanguínea , Ketamina/uso terapêutico , Pneumoperitônio/complicações , Traumatismo por Reperfusão/prevenção & controle , Animais , Dióxido de Carbono , Relação Dose-Resposta a Droga , Proteínas de Ligação a Ácido Graxo/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Ketamina/administração & dosagem , Masculino , Malondialdeído/metabolismo , Pneumoperitônio/induzido quimicamente , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA