Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 449: 139197, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581788

RESUMO

Abalone (Haliotis spp.) is a shellfish known for its exceptional nutritional value and significant economic worth. This study investigated the dynamic characteristics of non-volatile compounds over a year, including metabolites, lipids, nucleotides, and free amino acids (FAAs), which determined the nutritional quality and flavor of abalone. 174 metabolites and 371 lipids were identified and characterized, while 20 FAAs and 11 nucleotides were quantitatively assessed. These non-volatile compounds of abalone were fluctuated with months variation, which was consistent with the fluctuations of environmental factors, especially seawater temperature. Compared with seasonal variation, gender had less influence on these non-volatiles. June and July proved to be the optimal harvesting periods for abalone, with the levels of overall metabolites, lipids, FAAs, and nucleotides in abalone exhibiting a higher value in June and July over a year. Intriguingly, taurine covered 60% of the total FAAs and abalone could be used as dietary taurine supplementation.


Assuntos
Aminoácidos , Gastrópodes , Metabolômica , Estações do Ano , Frutos do Mar , Animais , Gastrópodes/química , Gastrópodes/metabolismo , Frutos do Mar/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Lipídeos/química , Valor Nutritivo , Masculino , Feminino
2.
Food Chem ; 447: 138949, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484544

RESUMO

Abalone, a highly sought-after aquatic product, possesses significant nutritional value. In this study, the relationship between aroma characteristics and lipid profile of abalone (Haliotis discus hannai) during seasonal fluctuation and thermal processing were profiled via volatolomics and lipidomics. 46 aroma compounds and 371 lipids were identified by HS-SPME-GC-MS and UPLC-Q-Extractive Orbitrap-MS, respectively. Multivariate statistical analysis indicated that carbonyls (aldehydes and ketones) and alcohols were the characteristic aroma compounds of abalone. The fluctuations in the aroma compound and lipid composition of abalone were consistent with the seasonal variation, especially seawater temperature. In addition, based on the correlation analysis, it was found that carbonyls (aldehydes and ketones) and alcohols had a positive correlation with phospholipids (lysophosphatidylethanolamines and lysophosphatidylcholines), while a negative correlation was observed with fatty acyls. These findings suggested that the effect of seasonal variations on the aroma changes of abalone might achieved by modulating the lipids composition of abalone.


Assuntos
Gastrópodes , Odorantes , Animais , Estações do Ano , Fosfolipídeos , Aldeídos , Cetonas
3.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788446

RESUMO

Seafood tends to be highly vulnerable to spoilage and deterioration due to biochemical reactions and microbial contaminations, which requires appropriate processing technologies to improve or maintain its quality. Flavor, as an indispensable aspect reflecting the quality profile of seafood and influencing the final choice of consumers, is closely related to the processing technologies adopted. This review gives updated information on traditional and emerging processing technologies used in seafood processing and their implications on flavor. Traditional processing technologies, especially thermal treatment, effectively deactivate microorganisms to enhance seafood safety and prolong its shelf life. Nonetheless, these methods come with limitations, including reduced processing efficiency, increased energy consumption, and alterations in flavor, color, and texture due to overheating. Emerging processing technologies like microwave heating, infrared heating, high pressure processing, cold plasma, pulsed electric field, and ultrasound show alternative effects to traditional technologies. In addition to deactivating microorganisms and extending shelf life, these technologies can also safeguard the sensory quality of seafood. This review discusses emerging processing technologies in seafood and covers their principles, applications, developments, advantages, and limitations. In addition, this review examines the potential synergies that can arise from combining certain processing technologies in seafood processing.

4.
Food Funct ; 12(21): 10994-11008, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657937

RESUMO

Cyanidin 3-O-galactoside (Cy3Gal) from Aronia melanocarpa has been reported to alleviate cognitive impairment. Metformin for preventing the neurodegenerative disease is attracting increasing attention. However, the neuroprotective and metabolic health promoting both of their effects are not clear. We chose the senescence accelerated mouse prone 8 (SAMP8) as a model of spontaneous learning and memory impairment. This study aimed to investigate the synergistic neuroprotective effect of metformin and Cy3Gal by behavioral and histopathological assays and metabolite analysis in SAMP8 mice. The SAMR1 mice were the normal group, and the SAMP8 mice were divided into five groups, including the SAMP8 model group, the donepezil (1 mg kg-1, ig) group, the metformin (100 mg kg-1, ig) group, the Cy3Gal (25 mg kg-1, ig) group, and the combination of metformin plus Cy3Gal (Met + Cy3Gal, 100 mg kg-1, 25 mg kg-1, ig) group. The behavior experiments showed that the SAMP8 mice treated with metformin and Cy3Gal showed improved spatial learning and memory compared to the SAMP8 model group. The number of neurons in the Met + Cy3Gal group was significantly higher than that in the SAMP8 group and the Met + Cy3Gal group showed significantly reduced Aß aggregation in the brain, which was elevated in SAMP8 mice. Compared with SAMP8 mice, the Met + Cy3Gal group showed decreased indole, methyl esters and ketones and increased short-chain fatty acids and alcohols in feces and urine by regulating the fatty acid biosynthesis and degradation. This study confirmed the neuroprotective effects of coadministration of metformin and cyanidin 3-O-galactoside in the SAMP8 mice, and suggested its positive effect on postponing the progression of Alzheimer's disease.


Assuntos
Antocianinas/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Metformina/uso terapêutico , Photinia/química , Animais , Antocianinas/administração & dosagem , Antocianinas/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos , Teste do Labirinto Aquático de Morris , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico
5.
Foods ; 10(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383966

RESUMO

Black chokeberry (Aronia melanocarpa) fruits are rich in anthocyanins, which are vital secondary metabolites that possess antioxidative properties. The aim of this study was to isolate and purify the anthocyanins from black chokeberry by simulated moving bed (SMB) chromatography, and to investigate the neuroprotective effect of SMB purified anthocyanin against Aß-induced memory damage in rats. The parameters of the SMB process were studied and optimized. Anthocyanin extracts were identified by HPLC and UPLC-QTOF-MS, and antioxidant abilities were evaluated. The Aß-induced animal model was established by intracerebral ventricle injection in rat brain. Through the SMB purification, anthocyanins were purified to 85%; cyanidin 3-O-galactoside and cyanidin 3-O-arabinoside were identified as the main anthocyanins by UPLC-QTOF-MS. The SMB purified anthocyanins exhibited higher DPPH and ABTS free radical scavenging abilities than the crude anthocyanins extract. Furthermore, rats receiving SMB purified anthocyanins treatment (50 mg/kg) showed improved spatial memory in a Morris water maze test, as well as protection of the cells in the hippocampus against Aß toxicity. These results demonstrate that anthocyanins could serve as antioxidant and neuroprotective agents, with potential in the treatment of Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA