Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056538

RESUMO

Rice (Oryza sativa) plants contain plastidial and cytosolic disproportionating enzymes (DPE1 and DPE2). Our previous studies showed that DPE2 acts on maltose, the major product of starch degradation in pollens, releasing one glucose to fuel pollen tube growth and fertilization, whereas DPE1 participates in endosperm starch synthesis by transferring maltooligosyl groups from amylose to amylopectin, and removing excess short maltooligosaccharides. However, little is known about their integrated function. Here, we report that the coordinated actions of DPE1 and DPE2 contribute to grain setting and filling in rice. The dpe1dpe2 mutants could not be isolated from the progeny of heterozygous parental plants but were obtained via anther culture. Unlike that reported in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), the dpe1dpe2 rice plants grew normally but only yielded a small number of empty, unfilled seeds. In the dpe1dpe2 seeds, nutrient accumulation was substantially reduced, and dorsal vascular bundles were also severely malnourished. Zymogram analyses showed that changes in activities of the major starch-synthesizing enzymes matched well with various endosperm phenotypes of mutant seeds. Mechanistically, DPE1 deficiency allowed normal starch mobilization in leaves and pollens but affected starch synthesis in endosperm, while DPE2 deficiency blocked starch degradation, resulting in substantially decreased levels of the sugars available for pollen tube growth and grain filling. Overall, our results demonstrate the great potential of DPE1-DPE2 as an important regulatory module to realize higher crop yields and present a promising target for regulating nutrient accumulation in cereal crop endosperm.

2.
Environ Sci Pollut Res Int ; 31(29): 41824-41843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862798

RESUMO

Ammonia nitrogen (NH3-N/NH4+-N) serves as a crucial chemical in biochemistry and fertilizer synthesis. However, it is also a toxic compound, posing risks from eutrophication to direct threats to human health. Ammonia nitrogen pollution pervades water sources, presenting a significant challenge. While several water treatment technologies exist, biological treatment, though widely used, has its limitations. Hence, green and efficient photocatalytic technology emerges as a promising solution. However, current monolithic semiconductor photocatalysts prove inadequate in controlling ammonia nitrogen pollution. Therefore, this review focuses on enhancing semiconductor photocatalysts' efficiency through modification, discussing four mechanisms: (1) mono-ionic modification; (2) metallic and non-metallic modification; (3) construct heterojunctions; and (4) enhancement of synergistic effects of multiple technologies. The influencing factors of photocatalytic ammonia nitrogen removal efficiency are also explored. Moreover, the review outlines the limitations of current photocatalytic pollution treatment and discusses future development trends and research challenges. Currently, the main products of ammonia nitrogen removal include NO3-, NO2-, and N2. To mitigate secondary pollution, the green process of converting ammonia nitrogen to N2 using photocatalysis emerges as a fundamental approach for future treatment. Overall, this review aims to deepen understanding of photocatalysis in ammonia nitrogen treatment and guide researchers toward widespread implementation of this endeavor.


Assuntos
Amônia , Nitrogênio , Purificação da Água , Amônia/química , Catálise , Purificação da Água/métodos , Nitrogênio/química , Poluentes Químicos da Água/química
3.
PeerJ ; 12: e17381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726379

RESUMO

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Assuntos
Escherichia coli , Fezes , Panthera , Tigres , Sequenciamento Completo do Genoma , Animais , Tigres/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Panthera/microbiologia , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , China , Virulência/genética , Farmacorresistência Bacteriana/genética , Polimorfismo de Nucleotídeo Único/genética , Tipagem de Sequências Multilocus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA