RESUMO
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
RESUMO
As a typical micro/nano processing technique, femtosecond laser fabrication provides the opportunity to achieve delicate microstructures. The outstanding advantages, including nanoscale feature size and 3D architecting, can bridge the gap between the complexity of the central nervous system in virto and in vivo. Up to now, various types of microstructures made by femtosecond laser are widely used in the field of neurobiological research. In this mini review, we present the recent advancement of femtosecond laser fabrication and its emerging applications in neurobiology. Typical structures are sorted out from nano, submicron to micron scale, including nanoparticles, micro/nano-actuators, and 3D scaffolds. Then, several functional units applied in neurobiological fields are summarized, such as central nervous system drug carriers, micro/nano robots and cell/tissue scaffolds. Finally, the current challenges and future perspective of integrated neurobiology research platform are discussed.
RESUMO
A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.
RESUMO
A data-processing technique is proposed for use with conventional frequency-chirped absorption spectroscopy to ensure accurate mapping of spectral features into time-domain signatures with arbitrarily fast readout chirp rates. This technique recovers the spectrum from a signal that is distorted owing to the fast chirp rate and therefore facilitates fast measurement of the spectral features over a broad spectral range with high resolution. Both numerical simulations and experimental results are presented.
RESUMO
Using multiple temporally-overlapped, frequency offset and phase-tuned, linear frequency chirps, a new method of multi-GHz optical coherent transient optical pulse shaping and processing in inhomogeneously broadened rare-earth doped crystals is proposed. Using this technique with properly chirped laser sources, multi-GHz processing can be controlled with conventional low-bandwidth electronics and optical modulators. Specifically, this technique enables pulse shaping in the MHz to THz frequency regime with time-bandwidth-products exceeding 100,000, filling the gap between the operating regimes of femtosecond pulse shaping and analog electronics. The low bandwidth (~20 MHz) proof-of-concept demonstrations presented in this paper include pulse train creation, selfconvolution, auto-correlation, and chirped pulse compression.
RESUMO
Stimulated photon echoes (SPEs) with time duration comparable to the coherent lifetime and Rabi period have been investigated theoretically and experimentally with an angled beam configuration. The Rabi oscillation effects on both the transmitted field (optical nutation) and the SPE fields are explained by analytic solutions of Maxwell-Bloch equations. The theory also predicts that an echo can exist in the noncausal direction, and this was confirmed by experiments with Tm:YAG crystal.