RESUMO
The development of novel therapeutic approaches to facilitate endometrial repair and regeneration while preventing adhesion recurrence is a crucial research objective aimed at enhancing clinical outcomes for women with intrauterine adhesions (IUA). In this study, we introduced an injectable Alg-GMA/PTSB zwitterionic hydrogel, characterized by excellent biocompatibility, anti-protein adsorption properties, and biodegradability. In a rat model, the hydrogel significantly promoted the regeneration and angiogenesis of damaged endometrial tissue, leading to improved recovery of epithelial cells, glands, proliferation, and vascularization. Furthermore, it exhibited the ability to suppress cellular apoptosis and collagen deposition, thereby mitigating fibrosis. Additionally, the hydrogel restored the expression of estrogen/progesterone receptors and endometrial receptivity markers, contributing to enhanced embryo implantation and fertility. These findings underscore the potential of the hydrogel as a promising therapeutic strategy for addressing endometrial injury, reducing fibrosis, restoring fertility, and ultimately improving outcomes for women with IUA.
Assuntos
Alginatos , Endométrio , Fertilidade , Hidrogéis , Feminino , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Alginatos/química , Alginatos/farmacologia , Ratos , Fertilidade/efeitos dos fármacos , Aderências Teciduais/prevenção & controle , Aderências Teciduais/tratamento farmacológico , Ratos Sprague-Dawley , Injeções , Regeneração/efeitos dos fármacos , HumanosRESUMO
Ulcerative colitis (UC) is a recurrent inflammatory disease without a specific cure or treatment for improvement. Here, we investigated the potential therapeutic effect and mechanism of ginsenoside Rg3 (Gin Rg3) on UC. We constructed an in vitro cellular inflammatory model and a dextran sulfate sodium (DSS)-induced UC mouse model. We also used Gin Rg3, MCC950 (NLRP3 inhibitor), MSU (NLRP3 activator), and fecal transplantation (FMT) to intervene the model. The results showed that Gin Rg3 inhibited NLRP3 inflammasome activation, pyroptosis, and apoptosis in vitro and in vivo. DSS-induced changes in the abundance of gut microbiota at the phylum or genus level were partially restored by Gin Rg3. Furthermore, gin Rg3 affected intestinal metabolism in mice by inhibiting the activation of NLRP3 inflammasome. The gut microbiota treated with Gin Rg3 was sufficient to alleviate DSS-induced UC. In summary, Gin Rg3 alleviated DSS-induced UC by inhibiting NLRP3 inflammasome activation and regulating gut microbiota homeostasis.
RESUMO
Magnetic nanoparticle-embedded polymeric micelles (MNP-PMs) prepared with amphipathic polymers are an important sustained-release carrier for hydrophobic drugs. The amphipathic chitosan derivatives (ACDs) based stimuli-responsive slow-release carriers have attracted considerable attentions because of the bioactivities and modifiability of chitosan. In the current study, a series of ACDs including alkylated N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride (alkyl-HTCC) and alkylated polyethylene glycol N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride (alkyl-PEG-HTCC) were prepared by the reductive amination of HTCC and PEG-HTCC, and their structures and properties were characterized. Octyl-HTCC/O-Fe3O4 and octyl-PEG-HTCC/O-Fe3O4 MNP-PMs were prepared by the hydrophobic interactions between the corresponding ACDs and oil soluble Fe3O4 magnetic nanoparticles (O-Fe3O4 MNPs), and characterized for the structure, magnetic performance and surface charge state. Their potential application as a drug delivery carrier was investigated upon the embedding efficiency and pH dependent sustained-release performance using the hydrophobic drug, paclitaxel (PTX), as a model drug. Our work has provided a new application strategy of ACDs in the multi-functional drug delivery carrier.