Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(26): 44501-44514, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178519

RESUMO

Conventional theoretical studies on the ground-state laser cooling of a trapped ion have mostly focused on the weak sideband coupling (WSC) regime, where the cooling rate is inverse proportional to the linewidth of the excited state. In a recent work [New J. Phys.23, 023018 (2021)10.1088/1367-2630/abe273], we proposed a theoretical framework to study the ground state cooling of a trapped ion in the strong sideband coupling (SSC) regime, under the assumption of a vanishing carrier transition. Here we extend this analysis to more general situations with nonvanishing carrier transitions, where we show that by properly tuning the coupling lasers a cooling rate proportional to the linewidth can be achieved. Our theoretical predictions closely agree with the corresponding exact solutions in the SSC regime, which provide an important theoretical guidance for sideband cooling experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA