Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2306952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175860

RESUMO

Soft actuators inspired by the movement of organisms have attracted extensive attention in the fields of soft robotics, electronic skin, artificial intelligence, and healthcare due to their excellent adaptability and operational safety. Liquid crystal elastomer fiber actuators (LCEFAs) are considered as one of the most promising soft actuators since they can provide reversible linear motion and are easily integrated or woven into complex structures to perform pre-programmed movements such as stretching, rotating, bending, and expanding. The research on LCEFAs mainly focuses on controllable preparation, structural design, and functional applications. This review, for the first time, provides a comprehensive and systematic review of recent advances in this important field by focusing on reversible thermal response LCEFAs. First, the thermal driving mechanism, and direct and indirect heating strategies of LCEFAs are systematically summarized and analyzed. Then, the fabrication methods and functional applications of LCEFAs are summarized and discussed. Finally, the challenges and technical difficulties that may hinder the performance improvement and large-scale production of LCEFAs are proposed, and the development opportunities of LCEFAs are prospected.

2.
J Colloid Interface Sci ; 610: 1043-1056, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34872721

RESUMO

Soybean-oil-based polymer is a promising bio-based water barrier coating on paper packaging but the application is challenged due to its poor water dispersibility. In this present study, 3-aminopropyltriethoxysilane (APTES) modified nanocrystalline cellulose (NCC) was used to implement a stable dispersion of acrylated epoxidized soybean oil (AESO) in water and thus synergistically improved the water vapor barrier properties after coating on paper. APTES-NCC was successfully prepared, and displayed a better interface compatibility with AESO through the Michael addition reaction. Compared with NCC, APTES-NCC displayed an improved hydrophobicity and wettability with AESO, with an increase of contact angle from 38.0° to 76.4°, and a decrease of interfacial tension from 91.5 ± 3.5 mN/m to 82.9 ± 1.8 mN/m. As an emulsifier, APTES-NCC can be more effectively adsorbed on the oil-water interface to form a more stable emulsion than NCC, with a decrease of AESO droplets size from 4.8 µm to 3.1 µm, and a remarkable improvement in static and centrifugal stability. In rheological measurement, the APTES-NCC/AESO emulsion showed a wider linear viscoelastic region (3.4%), better viscoelasticity and thermal curing properties than that of NCC/AESO emulsion, which further explained that the stability of APTES-NCC/AESO emulsion were improved. Therefore, APTES-NCC/AESO emulsion as a coating on paper cured into a continuous barrier film can effectively improve the water vapor barrier properties of paper, and the water vapor transmission rate (WVTR) of paper can be reduced from 1392.8 g/m2•24 h (NCC/AESO emulsion-coated) to 1286.3 g/m2 24 h (APTES-NCC/AESO emulsion-coated), both are significantly lower than that of base paper (1926.7 g/m2•24 h). CLSM testing showed that APTES-NCC could interact effectively with AESO to forming a tight barrier on paper surface and at the same time, sealing the pores inside the paper to resist water vapor penetration. The high-stable AESO emulsion prepared by APTES-NCC is expected to facilitate the utilization of NCC and AESO as a value-added material in making sustainable barrier packaging.


Assuntos
Glycine max , Vapor , Acrilatos , Celulose , Emulsões , Vapor/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA