Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Methods ; 20(1): 153, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350264

RESUMO

Accurate monitoring of wheat phenological stages is essential for effective crop management and informed agricultural decision-making. Traditional methods often rely on labour-intensive field surveys, which are prone to subjective bias and limited temporal resolution. To address these challenges, this study explores the potential of near-surface cameras combined with an advanced deep-learning approach to derive wheat phenological stages from high-quality, real-time RGB image series. Three deep learning models based on three different spatiotemporal feature fusion methods, namely sequential fusion, synchronous fusion, and parallel fusion, were constructed and evaluated for deriving wheat phenological stages with these near-surface RGB image series. Moreover, the impact of different image resolutions, capture perspectives, and model training strategies on the performance of deep learning models was also investigated. The results indicate that the model using the sequential fusion method is optimal, with an overall accuracy (OA) of 0.935, a mean absolute error (MAE) of 0.069, F1-score (F1) of 0.936, and kappa coefficients (Kappa) of 0.924 in wheat phenological stages. Besides, the enhanced image resolution of 512 × 512 pixels and a suitable image capture perspective, specifically a sensor viewing angle of 40° to 60° vertically, introduce more effective features for phenological stage detection, thereby enhancing the model's accuracy. Furthermore, concerning the model training, applying a two-step fine-tuning strategy will also enhance the model's robustness to random variations in perspective. This research introduces an innovative approach for real-time phenological stage detection and provides a solid foundation for precision agriculture. By accurately deriving critical phenological stages, the methodology developed in this study supports the optimization of crop management practices, which may result in improved resource efficiency and sustainability across diverse agricultural settings. The implications of this work extend beyond wheat, offering a scalable solution that can be adapted to monitor other crops, thereby contributing to more efficient and sustainable agricultural systems.

2.
Front Plant Sci ; 15: 1416221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253573

RESUMO

The timely and accurate acquisition of crop-growth information is a prerequisite for implementing intelligent crop-growth management, and portable multispectral imaging devices offer reliable tools for monitoring field-scale crop growth. To meet the demand for obtaining crop spectra information over a wide band range and to achieve the real-time interpretation of multiple growth characteristics, we developed a novel portable snapshot multispectral imaging crop-growth sensor (PSMICGS) based on the spectral sensing of crop growth. A wide-band co-optical path imaging system utilizing mosaic filter spectroscopy combined with dichroic mirror beam separation is designed to acquire crop spectra information over a wide band range and enhance the device's portability and integration. Additionally, a sensor information and crop growth monitoring model, coupled with a processor system based on an embedded control module, is developed to enable the real-time interpretation of the aboveground biomass (AGB) and leaf area index (LAI) of rice and wheat. Field experiments showed that the prediction models for rice AGB and LAI, constructed using the PSMICGS, had determination coefficients (R²) of 0.7 and root mean square error (RMSE) values of 1.611 t/ha and 1.051, respectively. For wheat, the AGB and LAI prediction models had R² values of 0.72 and 0.76, respectively, and RMSE values of 1.711 t/ha and 0.773, respectively. In summary, this research provides a foundational tool for monitoring field-scale crop growth, which is important for promoting high-quality and high-yield crops.

3.
Sci Total Environ ; 940: 173531, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38821277

RESUMO

Extreme climate events such as frost and drought have great influence on wheat growth and yield. Understanding the effects of frost, drought and compound frost-dry events on wheat growth and yield is of great significance for ensuring national food security. In this study, wheat yield prediction model (SCYMvp) was developed by combining crop growth model (CGM), satellite images and meteorological variables. Wheat yield maps in the Huang-Huai-Hai Plain (HHHP) during 2001-2020 were generated using SCYMvp model. Meanwhile, accumulative frost days (AFD), accumulative dry days (ADD) and accumulative frost-dry days (AFDD) in different growth periods of wheat were calculated, and the effects of frost and drought on wheat yield were quantified by the first difference method and linear mixed model. The results showed that wheat yield increased significantly, while the rising trend was obvious at more than half of the regions. Extreme climate events (ECEs) showed a relatively stable change trend, although the change trend was significant only in a few areas. Compared with frost and drought in the early growth period, ECEs in the middle growth period (spring ECEs) had more negative effects on wheat growth and yield. Wheat yield was negatively correlated with spring ECEs, and yield loss was between 4.6 and 49.8 kg/ha for each 1 d increase of spring ECEs. The effects of spring ECEs on wheat yield were ranked as AFDD > AFD > ADD. The negative effect of ADD on wheat yield in the late growth period was higher than that in the other periods. The negative effects of spring ECEs on yield in southern regions were higher than those in northern regions. Overall, due to the adverse effects of frost and drought on wheat yield in the middle and late growth periods, the mean annual yield loss was 6.4 %, among which spring AFD caused the greatest loss to wheat yield (3.1 %). The results have important guiding significance for formulating climate adaptation management strategies.


Assuntos
Mudança Climática , Secas , Estações do Ano , Triticum , Triticum/crescimento & desenvolvimento , China , Congelamento , Análise Espaço-Temporal
4.
Plant Methods ; 20(1): 15, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287423

RESUMO

The number of seedlings is an important indicator that reflects the size of the wheat population during the seedling stage. Researchers increasingly use deep learning to detect and count wheat seedlings from unmanned aerial vehicle (UAV) images. However, due to the small size and diverse postures of wheat seedlings, it can be challenging to estimate their numbers accurately during the seedling stage. In most related works in wheat seedling detection, they label the whole plant, often resulting in a higher proportion of soil background within the annotated bounding boxes. This imbalance between wheat seedlings and soil background in the annotated bounding boxes decreases the detection performance. This study proposes a wheat seedling detection method based on a local annotation instead of a global annotation. Moreover, the detection model is also improved by replacing convolutional and pooling layers with the Space-to-depth Conv module and adding a micro-scale detection layer in the YOLOv5 head network to better extract small-scale features in these small annotation boxes. The optimization of the detection model can reduce the number of error detections caused by leaf occlusion between wheat seedlings and the small size of wheat seedlings. The results show that the proposed method achieves a detection accuracy of 90.1%, outperforming other state-of-the-art detection methods. The proposed method provides a reference for future wheat seedling detection and yield prediction.

5.
Plant Phenomics ; 5: 0109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915995

RESUMO

Accurate wheat spike detection is crucial in wheat field phenotyping for precision farming. Advances in artificial intelligence have enabled deep learning models to improve the accuracy of detecting wheat spikes. However, wheat growth is a dynamic process characterized by important changes in the color feature of wheat spikes and the background. Existing models for wheat spike detection are typically designed for a specific growth stage. Their adaptability to other growth stages or field scenes is limited. Such models cannot detect wheat spikes accurately caused by the difference in color, size, and morphological features between growth stages. This paper proposes WheatNet to detect small and oriented wheat spikes from the filling to the maturity stage. WheatNet constructs a Transform Network to reduce the effect of differences in the color features of spikes at the filling and maturity stages on detection accuracy. Moreover, a Detection Network is designed to improve wheat spike detection capability. A Circle Smooth Label is proposed to classify wheat spike angles in drone imagery. A new micro-scale detection layer is added to the network to extract the features of small spikes. Localization loss is improved by Complete Intersection over Union to reduce the impact of the background. The results show that WheatNet can achieve greater accuracy than classical detection methods. The detection accuracy with average precision of spike detection at the filling stage is 90.1%, while it is 88.6% at the maturity stage. It suggests that WheatNet is a promising tool for detection of wheat spikes.

6.
Plant Methods ; 19(1): 46, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179312

RESUMO

BACKGROUND: Detecting and counting wheat spikes is essential for predicting and measuring wheat yield. However, current wheat spike detection researches often directly apply the new network structure. There are few studies that can combine the prior knowledge of wheat spike size characteristics to design a suitable wheat spike detection model. It remains unclear whether the complex detection layers of the network play their intended role. RESULTS: This study proposes an interpretive analysis method for quantitatively evaluating the role of three-scale detection layers in a deep learning-based wheat spike detection model. The attention scores in each detection layer of the YOLOv5 network are calculated using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm, which compares the prior labeled wheat spike bounding boxes with the attention areas of the network. By refining the multi-scale detection layers using the attention scores, a better wheat spike detection network is obtained. The experiments on the Global Wheat Head Detection (GWHD) dataset show that the large-scale detection layer performs poorly, while the medium-scale detection layer performs best among the three-scale detection layers. Consequently, the large-scale detection layer is removed, a micro-scale detection layer is added, and the feature extraction ability in the medium-scale detection layer is enhanced. The refined model increases the detection accuracy and reduces the network complexity by decreasing the network parameters. CONCLUSION: The proposed interpretive analysis method to evaluate the contribution of different detection layers in the wheat spike detection network and provide a correct network improvement scheme. The findings of this study will offer a useful reference for future applications of deep network refinement in this field.

7.
Plant Phenomics ; 5: 0036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996346

RESUMO

Establishing the universal critical nitrogen (NC) dilution curve can assist in crop N diagnosis at the regional scale. This study conducted 10-year N fertilizer experiments in Yangtze River Reaches to establish universal NC dilution curves for Japonica rice based on simple data-mixing (SDM), random forest algorithm (RFA), and Bayesian hierarchical model (BHM), respectively. Results showed that parameters a and b were affected by the genetic and environmental conditions. Based on RFA, highly related factors of a (plant height, specific leaf area at tillering end, and maximum dry matter weight during vegetative growth period) and b (accumulated growing degree days at tillering end, stem-leaf ratio at tillering end, and maximum leaf area index during vegetative growth period) were successfully applied to establish the universal curve. In addition, representative values (most probable number [MPN]) were selected from posterior distributions obtained by the BHM approach to explore universal parameters a and b. The universal curves established by SDM, RFA, and BHM-MPN were verified to have a strong N diagnostic capacity (N nutrition index validation R 2 ≥ 0.81). In summary, compared with the SDM approach, RFA and BHM-MPN can greatly simplify the modeling process (e.g., defining N-limiting or non-N-limiting groups) while maintaining a good accuracy, which are more conducive to the application and promotion at the regional scale.

8.
Sci Total Environ ; 871: 161967, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737023

RESUMO

The investigation of ecosystem respiration (RE) and its vital influential factors along with the timely and accurate detection of spatiotemporal variations in RE are essential for guiding agricultural production planning. RE observation in the plot region is primarily based on the laborious chamber method. However, upscaling the spatial-temporal estimates of RE at the canopy scale is still challenging. The present study conducted a field experiment to determine RE using the chamber method. A multi-rotor unmanned aerial vehicle (UAV) equipped with a multispectral camera was employed to acquire the canopy spectral data of wheat during each RE test experiment. Moreover, the agronomic indicators of aboveground plant biomass, leaf area index, leaf dry mass as well as agrometeorological and soil data were measured simultaneously. The study analyzed the potential of multi-information for estimating RE at the field scale and proposed two strategies for RE estimation. In addition, a semiempirical, yet Lloyd and Taylor-based, remote sensing model (LT1-NIRV) was developed for estimating RE observed across different growth stages with a small margin of error (coefficient of determination [R2] = 0.60-0.64, root-mean-square error [RMSE] = 285.98-316.19 mg m-2 h-1). Further, five machine learning (ML) algorithms were utilized to independently estimate RE using two different datasets. The rigorous analyses, which included statistical comparison and cross-validation for estimating RE, confirmed that the XGBoost model, with the highest R2 and lowest RMSE (R2 = 0.88 and RMSE = 172.70 mg m-2 h-1), performed the best among the evaluated ML models. The LT1-NIRV model was less effective in estimating RE compared with the other ML models. Based on this comprehensive comparison analysis, the ML model can successfully estimate variations in wheat field RE using high-resolution UAV multispectral images and environmental factors from the wheat cropland system, thereby providing a valuable reference for monitoring and upscaling RE observations.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Triticum , Respiração , Produtos Agrícolas
9.
Front Plant Sci ; 14: 1255015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328620

RESUMO

Classification of rice disease is one significant research topics in rice phenotyping. Recognition of rice diseases such as Bacterialblight, Blast, Brownspot, Leaf smut, and Tungro are a critical research field in rice phenotyping. However, accurately identifying these diseases is a challenging issue due to their high phenotypic similarity. To address this challenge, we propose a rice disease phenotype identification framework which utilizing the transfer learning and SENet with attention mechanism on the cloud platform. The pre-trained parameters are transferred to the SENet network for parameters optimization. To capture distinctive features of rice diseases, the attention mechanism is applied for feature extracting. Experiment test and comparative analysis are conducted on the real rice disease datasets. The experimental results show that the accuracy of our method reaches 0.9573. Furthermore, we implemented a rice disease phenotype recognition platform based microservices architecture and deployed it on the cloud, which can provide rice disease phenotype recognition task as a service for easy usage.

10.
Plants (Basel) ; 11(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235476

RESUMO

Soil is characterized by high spatiotemporal variability due to the combined influence of internal and external factors. The most efficient approach for addressing spatial variability is the use of management zones (MZs). Common approaches for delineating MZs include K-means and fuzzy C-means cluster analysis algorithms. However, these clustering methods have been used to delineate MZs independent of the spatial dependence of soil variables. Thus, the accuracy of the clustering results has been limited. In this study, six soil variables (soil pH, total nitrogen, organic matter, available phosphorus, available potassium, and soil apparent electrical conductivity) were used to characterize the spatial variability within a representative village in Suining County, Jiangsu Province, China. Two variable reduction techniques (PCA, multivariate spatial analysis based on Moran's index; MULTISPATI-PCA) and three different clustering algorithms (fuzzy C-means clustering, iterative self-organizing data analysis techniques algorithm, and Gaussian mixture model; GMM) were used to optimize the MZ delineation. Different clustering model composites were evaluated using yield data collected after the wheat harvest in 2020. The results indicated that the variable reduction technologies in conjunction with clustering algorithms provided better performance in MZ delineation, with average silhouette coefficient (ASC) and variance reduction (VR) of 0.48-0.57, and 13.35-23.13%, respectively. Moreover, the MULTISPATI-PCA approach was more conducive to identifying variables requiring MZ delineation than traditional PCA methods. Combining MULTISPATI-PCA and the GMM algorithm yielded the greatest VR and ASC values in this study. These results can guide the optimization of MZ delineation in intensive agricultural systems, thus enabling more precise nutrient management.

11.
Front Med (Lausanne) ; 9: 964616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314025

RESUMO

Background: Stroke-associated pneumonia (SAP) is one of the major causes of death after suffering a stroke. Several scoring systems have been developed for the early prediction of SAP. However, it is unclear which scoring system is more suitable as a risk prediction tool. We performed this Bayesian network meta-analysis to compare the prediction accuracy of these scoring systems. Methods: Seven databases were searched from their inception up to April 8, 2022. The risk of bias assessment of included study was evaluated by the QUADAS-C tool. Then, a Bayesian network meta-analysis (NMA) was performed by R 4.1.3 and STATA 17.0 software. The surface under the cumulative ranking curve (SUCRA) probability values were applied to rank the examined scoring systems. Results: A total of 20 cohort studies involving 42,236 participants were included in this analysis. The results of the NMA showed that AIS-APS had excellent performance in prediction accuracy for SAP than Chumbler (MD = 0.030, 95%CI: 0.004, 0.054), A2DS2 (MD = 0.041, 95% CI: 0.023, 0.059), ISAN (MD = 0.045, 95% CI: 0.022, 0.069), Kwon (MD = 0.077, 95% CI: 0.055, 0.099) and PANTHERIS (MD = 0.082, 95% CI: 0.049, 0.114). Based on SUCRA values, AIS-APS (SUCRA: 99.8%) ranked the highest. Conclusion: In conclusion, the study found that the AIS-APS is a validated clinical tool for predicting SAP after the onset of acute ischemic stroke. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=292375, identifier: CRD42021292375.

12.
Front Plant Sci ; 13: 905001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105700

RESUMO

To provide a theory to guide the selection of the illumination parameters of light emitting diode (LED)-based light sources used for trapping Laodelphax striatellus, we used LED light sources and devices built in-house to detect L. striatellus phototactic behavior. Through phototaxis screening experiments of different light sources and the comparative experimental method, we analyzed the response patterns of L. striatellus to wavelength, light intensity, layout, flash frequency of monochromatic light sources, as well as combined color light sources, and discussed the mechanisms of the phototactic behavior of L. striatellus under different light sources. The results of the monochromatic light experiment showed that the trapping rate of the L. striatellus to the linear blue light source of 460 nm was the highest and was also significantly affected by the light intensity. The results of the experiments with the combined color light sources showed that compared with the linear 460 nm blue light source, the trapping rate of the L. striatellus was significantly improved by the polychromatic light, and the blue-green light led to the best improvement, reaching 1.5 times that of the trapping rate in the case of monochromatic light sources. The wavelength composition, light intensity, shape, and flash frequency of the light source used in this study can provide a theoretical basis for the development of LED-based light traps specifically for L. striatellus.

13.
Plant Commun ; 3(6): 100344, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35655429

RESUMO

Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has been observed over the last two decades and is analyzed here from an interdisciplinary perspective based on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields, working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to systematically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological significance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspectives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring novel phenotypic traits, and (3) facilitating multi-omics communication.


Assuntos
Fenômica , Melhoramento Vegetal , Produtos Agrícolas , Tecnologia de Sensoriamento Remoto , Fenótipo
14.
Front Plant Sci ; 13: 890892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755650

RESUMO

Timely and accurate estimation of plant nitrogen (N) status is crucial to the successful implementation of precision N management. It has been a great challenge to non-destructively estimate plant N status across different agro-ecological zones (AZs). The objective of this study was to use random forest regression (RFR) models together with multi-source data to improve the estimation of winter wheat (Triticum aestivum L.) N status across two AZs. Fifteen site-year plot and farmers' field experiments involving different N rates and 19 cultivars were conducted in two AZs from 2015 to 2020. The results indicated that RFR models integrating climatic and management factors with vegetation index (R2 = 0.72-0.86) outperformed the models by only using the vegetation index (R2 = 0.36-0.68) and performed well across AZs. The Pearson correlation coefficient-based variables selection strategy worked well to select 6-7 key variables for developing RFR models that could achieve similar performance as models using full variables. The contributions of climatic and management factors to N status estimation varied with AZs and N status indicators. In higher-latitude areas, climatic factors were more important to N status estimation, especially water-related factors. The addition of climatic factors significantly improved the performance of the RFR models for N nutrition index estimation. Climatic factors were important for the estimation of the aboveground biomass, while management variables were more important to N status estimation in lower-latitude areas. It is concluded that integrating multi-source data using RFR models can significantly improve the estimation of winter wheat N status indicators across AZs compared to models only using one vegetation index. However, more studies are needed to develop unmanned aerial vehicles and satellite remote sensing-based machine learning models incorporating multi-source data for more efficient monitoring of crop N status under more diverse soil, climatic, and management conditions across large regions.

15.
Front Plant Sci ; 13: 1102341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726669

RESUMO

The growth of the fusarium head blight (FHB) pathogen at the grain formation stage is a deadly threat to wheat production through disruption of the photosynthetic processes of wheat spikes. Real-time nondestructive and frequent proxy detection approaches are necessary to control pathogen propagation and targeted fungicide application. Therefore, this study examined the ch\lorophyll-related phenotypes or features from spectral and chlorophyll fluorescence for FHB monitoring. A methodology is developed using features extracted from hyperspectral reflectance (HR), chlorophyll fluorescence imaging (CFI), and high-throughput phenotyping (HTP) for asymptomatic to symptomatic disease detection from two consecutive years of experiments. The disease-sensitive features were selected using the Boruta feature-selection algorithm, and subjected to machine learning-sequential floating forward selection (ML-SFFS) for optimum feature combination. The results demonstrated that the biochemical parameters, HR, CFI, and HTP showed consistent alterations during the spike-pathogen interaction. Among the selected disease sensitive features, reciprocal reflectance (RR=1/700) demonstrated the highest coefficient of determination (R 2) of 0.81, with root mean square error (RMSE) of 11.1. The multivariate k-nearest neighbor model outperformed the competing multivariate and univariate models with an overall accuracy of R 2 = 0.92 and RMSE = 10.21. A combination of two to three kinds of features was found optimum for asymptomatic disease detection using ML-SFFS with an average classification accuracy of 87.04% that gradually improved to 95% for a disease severity level of 20%. The study demonstrated the fusion of chlorophyll-related phenotypes with the ML-SFFS might be a good choice for crop disease detection.

16.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451022

RESUMO

The accurate estimation and timely diagnosis of crop nitrogen (N) status can facilitate in-season fertilizer management. In order to evaluate the performance of three leaf and canopy optical sensors in non-destructively diagnosing winter wheat N status, three experiments using seven wheat cultivars and multi-N-treatments (0-360 kg N ha-1) were conducted in the Jiangsu province of China from 2015 to 2018. Two leaf sensors (SPAD 502, Dualex 4 Scientific+) and one canopy sensor (RapidSCAN CS-45) were used to obtain leaf and canopy spectral data, respectively, during the main growth period. Five N indicators (leaf N concentration (LNC), leaf N accumulation (LNA), plant N concentration (PNC), plant N accumulation (PNA), and N nutrition index (NNI)) were measured synchronously. The relationships between the six sensor-based indices (leaf level: SPAD, Chl, Flav, NBI, canopy level: NDRE, NDVI) and five N parameters were established at each growth stages. The results showed that the Dualex-based NBI performed relatively well among four leaf-sensor indices, while NDRE of RS sensor achieved a best performance due to larger sampling area of canopy sensor for five N indicators estimation across different growth stages. The areal agreement of the NNI diagnosis models ranged from 0.54 to 0.71 for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86 for NDRE, and the kappa coefficient ranged from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and 0.53 to 0.75 for NDRE across all growth stages. Overall, these results reveal the potential of sensor-based diagnosis models for the rapid and non-destructive diagnosis of N status.


Assuntos
Nitrogênio , Triticum , Fertilizantes , Folhas de Planta , Estações do Ano
17.
Ying Yong Sheng Tai Xue Bao ; 31(9): 3040-3050, 2020 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-33345505

RESUMO

To verify the accuracy and adaptability of crop growth monitoring and diagnosis apparatus (CGMD) in monitoring nitrogen nutrition index of double cropping rice, we established a monitoring model of leaf nitrogen concentration (LNC) and leaf nitrogen accumulation (LNA) for double cropping rice based on CGMD. Eight early and late rice cultivars were selected and four nitrogen application rates were set up. The differential vegetation index (DVI), normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) were collected using CGMD. Meanwhile, ASD FH2 high spectrometer was used to collect canopy spectral reflectance and calculated DVI, NDVI, and RVI. To verify the accuracy of CGMD, we compared the canopy vegetation indices change characteristics collected by CGMD and ASD FH2. The CGMD-based monitoring models of LNC and LNA were established, which was tested with independent field data. The results showed that LNC, LNA, DVI, NDVI and RVI of early and late rice increased with increasing nitrogen application rate, and increased first and then decreased with the advance of growth progress. The determination coefficient (R2) of fitting for DVI, NDVI and RVI from CGMD and ASD FH2 were 0.9350, 0.9436 and 0.9433, respectively. This result indicated that the measurement accuracy of CGMD was high, and that the CGMD could be used to replace ASD FH2 to measure canopy vegetation indices of early and late rice. Compared with the three canopy vegetation indices based on CGMD, the correlation between NDVICGMD and LNC and that between RVICGMD and LNA was the highest. The exponential model based on NDVICGMD could be used to accurate estimate LNC with the R2 in the range of 0.8581-0.9318, and the root mean square error (RMSE), relation root mean square error (RRMSE) and correlation coefficient (r) of model validation in the range of 0.1%-0.2%, 4.0%-8.5%, and 0.9041-0.9854, respectively. The power function model based on RVICGMD could be used to estimate LNA with the R2 in the range of 0.8684-0.9577, and the RMSE, RRMSE and r of model validation in the range of 0.37-0.89 g·m-2, 6.7%-20.4% and 0.9191-0.9851, respectively. Compared with the chemical testing method, using the CGMD could conveniently and accurately measure LNC and LNA of early and late rice, which had a potential to be widely applied for high yield and high efficiency cultivation and precise management of nitrogen fertilizer in double cropping rice production.


Assuntos
Oryza , Fertilizantes , Nitrogênio , Folhas de Planta
18.
Ying Yong Sheng Tai Xue Bao ; 31(2): 433-440, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32476335

RESUMO

The spectrometer-based nitrogen (N) nutrition monitoring and diagnosis models for double-cropping rice in Jiangxi is important for recommending precise N topdressing rate, achieving high yield, improving grain quality and increasing economic efficiency. Field experiments were conducted in Jiangxi in 2016 and 2017, involving different early rice and late rice cultivars and N application rates. Plant N accumulation (PNA) and canopy spectral vegetation indices (VIs) were measured at tillering and jointing stages with two spectrometers, i.e., GreenSeeker (an active multispectral sensor containing 780 and 660 nm wavelengths) and crop growth monitoring and diagnosis apparatus (CGMD, a passive multispectral sensor containing 810 and 720 nm wavelengths). The VI-based models of PNA were established from a experimental dataset and then validated using an independent dataset. The N topdressing rates for tillering and jointing stages were calculated using the newly developed N spectral diagnosis model and higher yield cultivation experience of double-cropping rice. The results showed that the VIs from two spectrometers were strongly positively correlated with PNA at both growth stages, with the model performance for tillering or jointing stages was better than that for the early growth stages. The exponential equation of normalized difference vegetation index (NDVI(780,660)) from GreenSeeker could be used to estimate PNA with a determination coefficient (R2) in the range of 0.92-0.94, the root mean square error (RMSE), relative root mean square error (RRMSE) and correlation coefficient (r) of model validation in the range of 3.09-5.96 kg·hm-2, 5.8%-18.5% and 0.92-0.98, respectively. The linear equation of difference vegetation index (DVI(810,720)) from CGMD could be used to estimate PNA with a R2 in the range of 0.90-0.93, the RMSE, RRMSE and r of model validation in the range of 3.71-6.33 kg·hm-2, 11.7%-14.3% and 0.93-0.96, respectively. The recommended N topdressing rate with CGMD was higher than that with GreenSeeker. Compared with conventional farmer's plan, the precision N application plan reduced N fertilizer application rate by 5.5 kg·hm-2, while N agronomic efficiency and net income was improved by 0.8% and 128 yuan·hm-2, respectively. Application of the spectral monitoring and diagnosis method to guiding fertilization could reduce cost and increase grain yield and net income, and thus had great potential for guiding double-cropping rice production.


Assuntos
Oryza , Agricultura , China , Grão Comestível , Fertilizantes , Nitrogênio
19.
Sensors (Basel) ; 20(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178244

RESUMO

Critical nitrogen (N) dilution curves (CNDCs) have been developed to describe the dilution dynamic of N and to diagnose N status in plants. In this study, to develop a convenient alternative CNDC determination method, four field experiments involving different N rates (0-360 kg N ha-1) and six wheat varieties were performed at different eco-sites from 2014 to 2019. The normalised difference red-edge (NDRE) index extracted from the RapidSCAN CS-45 (Holland Scientific Inc., Lincoln, NE, USA) sensor was used as a driving factor instead of plant dry matter (PDM) to establish a new alternative winter wheat CNDC. The newly developed CNDC was described by the equation Nc = 0.90NDRE-0.88, when NDRE values were ≤ 0.19 and constant Nc = 3.81%, which was independent of the NDRE values. Compared to PDM-derived CNDC (R2 = 0.73) developed with the same dataset, a comparable precision was obtained using NDRE-derived CNDC (R2 = 0.76) and both CNDCs could accurately discriminate wheat N status. Moreover, the NDRE could be inexpensively and rapidly measured using the active sensor. The relationship between NDRE-derived CNDC and grain yield was also analysed to facilitate in-season N management, and the R2 value reached 0.79 and 0.87 at jointing and booting stages, respectively. The NDRE-based CNDC can be used to effectively diagnose wheat N status and as an alternative approach for non-destructive determination of crop N levels.


Assuntos
Técnicas Biossensoriais/métodos , Nitrogênio/análise , Triticum/química , Agricultura , Técnicas Biossensoriais/instrumentação , Grão Comestível/metabolismo , Processamento Eletrônico de Dados , Fertilizantes/análise , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
20.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841552

RESUMO

Rapid and effective acquisition of crop growth information is a crucial step of precision agriculture for making in-season management decisions. Active canopy sensor GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA) is a portable device commonly used for non-destructively obtaining crop growth information. This study intended to expand the applicability of GreenSeeker in monitoring growth status and predicting grain yield of winter wheat (Triticum aestivum L.). Four field experiments with multiple wheat cultivars and N treatments were conducted during 2013⁻2015 for obtaining canopy normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) synchronized with four agronomic parameters: leaf area index (LAI), leaf dry matter (LDM), leaf nitrogen concentration (LNC), and leaf nitrogen accumulation (LNA). Duration models based on NDVI and RVI were developed to monitor these parameters, which indicated that NDVI and RVI explained 80%, 68⁻70%, 10⁻12%, and 67⁻73% of the variability in LAI, LDM, LNC and LNA, respectively. According to the validation results, the relative root mean square error (RRMSE) were all <0.24 and the relative error (RE) were all <23%. Considering the variation among different wheat cultivars, the newly normalized vegetation indices rNDVI (NDVI vs. the NDVI for the highest N rate) and rRVI (RVI vs. the RVI for the highest N rate) were calculated to predict the relative grain yield (RY, the yield vs. the yield for the highest N rate). rNDVI and rRVI explained 77⁻85% of the variability in RY, the RRMSEs were both <0.13 and the REs were both <6.3%. The result demonstrates the feasibility of monitoring growth parameters and predicting grain yield of winter wheat with portable GreenSeeker sensor.


Assuntos
Triticum/crescimento & desenvolvimento , Grão Comestível , Monitorização Fisiológica , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Estações do Ano , Triticum/metabolismo , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA