Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Viruses ; 16(5)2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793687

RESUMO

Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.


Assuntos
Ácaros , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Animais , Ácaros/virologia , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/genética , Frutas/virologia , Produtos Agrícolas/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
Plants (Basel) ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836254

RESUMO

Hop (Humulus lupulus L.) is a minor ingredient in the beer production but has a strong influence on the beer quality due to the high chemical complexity of the cones used in brewing. One of the major factors that can severely affect the chemical composition of the hop cones and their marketability is the presence of viral infections in the plant. Amongst the five major hop viruses, three belong to the Carlavirus genus: hop mosaic virus (HpMV), hop latent virus (HpLV), and American hop latent virus (AHLV). The occurrence of carlaviruses on hop germplasm in Italy was firstly recorded in 2017 but, in that context, a generic detection was only performed and no information on the infecting Carlavirus species was provided. To fill this gap, 51 hop samples previously found infected by carlaviruses were analysed by RT-PCR employing primer pairs specific for the coat protein (CP) of HpMV, HpLV and AHLV, respectively. HpLV resulted largely prevalent as it was detected in 96.1% of tested samples whereas for HpMV and AHLV an infection rate of 5.9% and 3.9% was recorded, respectively. CP nucleotide sequences from 13 selected virus isolates were obtained and analysed; moreover, the complete genome sequence of 7 isolates was obtained by using high throughput sequencing (HTS). Phylogenetic analysis showed close relationships among isolates from different geographical origin, including European and non-European countries, according to the worldwide movement of hop germplasm due to global trade. This is the first report of HpMV, HpLV and AHLV on hop germplasm in Italy.

3.
Plants (Basel) ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37653957

RESUMO

Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.

4.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375989

RESUMO

Among the cucurbit-infecting viruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) (Potyvirus: Potyviridae) are responsible for severe symptoms on cucumber, melon, watermelon, and zucchini cultivations worldwide. In this study, reverse transcription real-time PCR (real-time RT-PCR) and droplet-digital PCR (RT-ddPCR) assays targeting the coat protein (CP) genes of WMV and ZYMV were developed and validated according to the international standards of plant pest diagnosis (EPPO PM 7/98 (5)). First, the diagnostic performance of WMV-CP and ZYMV-CP real-time RT-PCRs was evaluated, and the assays displayed an analytical sensitivity of 10-5 and 10-3, respectively. The tests also showed an optimal repeatability, reproducibility and analytical specificity, and were reliable for the virus detection in naturally infected samples and across a wide range of cucurbit hosts. Based on these results, the real-time RT-PCR reactions were adapted to set up RT-ddPCR assays. These were the first RT-ddPCR assays aiming at the detection and quantification of WMV and ZYMV and showed a high sensitivity, being able to detect until 9 and 8 copies/µL of WMV or ZYMV, respectively. The RT-ddPCRs allowed the direct estimation of the virus concentrations and opened to a broad range of applications in disease management, such as the evaluation of partial resistance in breeding processes, identification of antagonistic/synergistic events, and studies on the implementation of natural compounds in the integrated management strategies.

5.
Front Microbiol ; 13: 862075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615512

RESUMO

Biochar is a rich carbon product obtained by pyrolysis of biomass under a limited supply of oxygen. It is composed mainly of aromatic molecules, but its agronomic value is hard to evaluate and difficult to predict due to its great variable characteristics depending on the type of starting biomass and the conditions of pyrolysis. Anyway, it could be used as soil amendment because it increases the soil fertility of acidic soils, increases the agricultural productivity, and seems to provide protection against some foliar and soilborne diseases. In this study, the effects of biochar, obtained from olive pruning, have been evaluated on tomato seedlings growth and on their response to systemic agents' infection alone or added with beneficial microorganisms (Bacillus spp. and Trichoderma spp.). First, experimental data showed that biochar seems to promote the development of the tomato seedlings, especially at concentrations ranging from 1 to 20% (w/w with peat) without showing any antimicrobial effects on the beneficial soil bacteria at the tomato rhizosphere level and even improving their growth. Thus, those concentrations were used in growing tomato plants experimentally infected with tomato spotted wilt virus (TSWV) and potato spindle tuber viroid (PSTVd). The biochar effect was estimated by evaluating three parameters, namely, symptom expression, number of infected plants, and pathogen quantification, using RT-qPCR technique and -ΔΔCt analysis. Biochar at 10-15% and when added with Trichoderma spp. showed that it reduces the replication of PSTVd and the expression of symptoms even if it was not able to block the start of infection. The results obtained on TSWV-infected plants suggested that biochar could contribute to reducing both infection rate and virus replication. For systemic viral agents, such as PSTVd and TSWV, there are no curative control methods, and therefore, the use of prevention means, as can be assumed the use biochar, for example, in the nursery specialized in horticultural crops, can be of great help. These results can be an encouraging starting point to introduce complex biochar formulates among the sustainable managing strategies of plant systemic diseases.

6.
Cells ; 11(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406664

RESUMO

Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole-3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancy-related pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF co-expressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.


Assuntos
Regulação da Expressão Gênica de Plantas , Cebolas , Ácido Abscísico/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Cebolas/genética , Cebolas/metabolismo , Potyvirus
7.
Viruses ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337014

RESUMO

The use of organic substances in integrated pest management can contribute to human- and environment-safe crop production. In the present work, a combination of organic biostimulants (Fullcrhum Alert and BioVeg 500) and an inorganic corroborant (Clinogold, zeolite) was tested for the effects on the plant response to the quarantine pest tomato leaf curl New Delhi virus (ToLCNDV). Biostimulants were applied to healthy and infected greenhouse-grown zucchini plants, and the vegetative parameters and viral titer were evaluated. Although no antiviral effects were observed in terms of both virus replication and symptom expression, these biostimulants were shown to influence plant fitness. A significant increase in biomass and in leaf, flower, and fruit production was induced in both healthy and infected plants. Biostimulants also enhanced the production of metabolites commonly involved in plant response to virus infection, such as carbohydrates, phenylpropanoids and free amino acids. These results encourage new field trials to evaluate the actual productivity of infected plants after treatments and the possible application of organic biostimulants in agriculture.


Assuntos
Begomovirus , Cucurbita , Solanum lycopersicum , Zeolitas , Begomovirus/genética , DNA Viral , Humanos , Doenças das Plantas/prevenção & controle , Zeolitas/farmacologia
8.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214821

RESUMO

Tobamovirus species represent a threat to solanaceous crops worldwide, due to their extreme stability and because they are seed borne. In particular, recent outbreaks of tomato brown rugose fruit virus in tomato and pepper crops led to the establishment of prompt control measures, and the need for reliable diagnosis was urged. Another member of the genus, tomato mottle mosaic virus, has recently gained attention due to reports in different continents and its common features with tomato brown rugose fruit virus. In this study, a new real-time RT-PCR detection system was developed for tomato brown rugose fruit virus and tomato mottle mosaic virus on tomato leaves and seeds using TaqMan chemistry. This test was designed to detect tomato mottle mosaic virus by amplifying the movement protein gene in a duplex assay with the tomato brown rugose fruit virus target on the CP-3'NTR region, which was previously validated as a single assay. The performance of this test was evaluated, displaying analytical sensitivity 10-5-10-6-fold dilution for seeds and leaves, respectively, and good analytical specificity, repeatability, and reproducibility. Using the newly developed and validated test, tomato brown rugose fruit virus detection was 100% concordant with previously performed analyses on 106 official samples collected in 2021 from different continents.

9.
Pathogens ; 11(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215150

RESUMO

In 2020, a test performance study (TPS) for the specific detection of tomato brown rugose fruit virus (ToBRFV) was organized in the frame of the H2020 Valitest project. Since no validated tests were available, all the protocols reported in the literature were at first screened, performing preliminary studies in accordance with the EPPO standard PM 7/98 (4). Five molecular tests, two conventional RT-PCR and three real-time RT-PCR were found to be suitable and were included in the TPS. Thirty-four laboratories from 18 countries worldwide took part in TPS, receiving a panel of 22 blind samples. The panel consisted of sap belonging to symptomatic or asymptomatic leaves of Solanum lycopersicum and Capsicum annuum. The results returned by each laboratory were analyzed and diagnostic parameters were assessed for each test: reproducibility, repeatability, analytical sensitivity, diagnostic sensitivity and diagnostic specificity. All the evaluated tests resulted in being reliable in detecting ToBRFV and were included in an EPPO Standard PM 7/146-Diagnostics.

10.
Arch Virol ; 166(9): 2619-2621, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213637

RESUMO

The genome of a new carlavirus isolate from asymptomatic wild Capparis spinosa L. plants in Sicily was sequenced via high-throughput sequencing (HTS) and 5'/3' RACE experiments. The complete genomic sequence was found to be 8,280 nt in length, excluding the poly(A) tail, and contained five putative open reading frames (ORFs). Molecular characterization revealed a close relationship to caper latent virus (CapLV), with 87% and 90% nucleotide sequence identity to available partial sequences of the ORFs encoding the replicase and coat protein of that virus. According to the molecular criteria for species demarcation, which is based on the ORF-1- and ORF-5-encoded proteins, the virus characterized in this study could be considered a variant of CapLV, and we have thus designated it as CapLV-W.


Assuntos
Capparis/virologia , Carlavirus/classificação , Carlavirus/genética , Carlavirus/isolamento & purificação , Doenças das Plantas/virologia , Sequenciamento Completo do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Sicília
11.
Plants (Basel) ; 9(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268586

RESUMO

In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, rapidity, and low-cost efforts. LAMP is a nucleic acid amplification under isothermal conditions, which is highly compatible with point-of-care (POC) analysis and has the potential to improve the diagnosis in plant protection. The great advantages of LAMP have led to several upgrades in order to implement the technique. In this review, the authors provide an overview reporting in detail the different LAMP steps, focusing on designing and main characteristics of the primer set, different methods of result visualization, evolution and different application fields, reporting in detail LAMP application in plant virology, and the main advantages of the use of this technique.

12.
J Sci Food Agric ; 100(8): 3418-3427, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166770

RESUMO

BACKGROUND: Plant viral infections induce changes in metabolic components in the host plant, with potential effects on compositional, organoleptic and storability features of agricultural products. Identification of modulated metabolites may provide clues concerning pathways implementing responses in plant-pathogen interactions. A time course study of metabolic fingerprinting of onion yellow dwarf virus (OYDV)-infected versus healthy 'Rossa di Tropea' onion bulbs was performed using proton high-resolution magic angle spinning nuclear magnetic resonance (1 H HR-MAS NMR) and ultra-performance liquid chromatography (UPLC), providing an overview of the metabolic state of the bulb in response to OYDV infection during storage. RESULTS: Metabolites accumulated/depleted upon infection were identified, belonging to flavonoid, saccharide, amino acid and organic acid classes. A decrease in quercetin glucosides content and antioxidant activity was observed in infected bulbs; some amino acids (Arg, Asn, Phe, Val) accumulated, while others were depleted (Leu); for some metabolites, a bimodal time-course was observed during storage (Glc, Lys). Virus interference on metabolic pathways, and the effects of the metabolic shift on edible product storability, organoleptic and nutritional quality were discussed. CONCLUSIONS: OYDV infection induces a metabolic shift in 'Rossa di Tropea' onion during bulb storage, involving several pathways and affecting storability and organoleptic and nutritional quality of bulbs at marketable stage. © 2020 Society of Chemical Industry.


Assuntos
Cebolas/metabolismo , Cebolas/virologia , Doenças das Plantas/virologia , Potyvirus/fisiologia , Antioxidantes/química , Antioxidantes/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Armazenamento de Alimentos , Espectroscopia de Ressonância Magnética , Valor Nutritivo , Cebolas/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/virologia
13.
J Virol Methods ; 271: 113680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202851

RESUMO

Onion yellow dwarf virus (OYDV) is one of the most important viral pathogens of onion. In particular, on 'Rossa di Tropea' onion, granted with Protected Geographical Indication (PGI) trademarks, this pathogen represents the most limiting biotic stress in terms of spread, severity of symptoms and damage, and its detection is necessary to preserve high quality standards and avoid yield losses. A reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed for detection of OYDV. The specificity, sensitivity, repeatability and reproducibility of the assay were validated according to EPPO standard PM7/98 (2). Diagnostic specificity, diagnostic sensitivity and diagnostic accuracy were determined in both leaf and bulb tissues. To enhance the feasibility of a LAMP-based method for field diagnosis, several nucleic acid extraction methods were compared to simplify sample preparation. The results showed the reliability of the method for OYDV detection, with a limit of detection (LOD) comparable to real time reverse transcription polymerase chain reaction (RT-qPCR). The ease of sample preparation, and the more than acceptable LOD, indicated that the RT-LAMP assay could be used in plant pathology laboratories with limited facilities and resources, as well as directly in the field. This work was carried out in the frame of "SI.ORTO" project.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Potyvirus/isolamento & purificação , Transcrição Reversa , Temperatura , Primers do DNA/genética , Limite de Detecção , Cebolas/virologia , Folhas de Planta/virologia , Raízes de Plantas/virologia , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Adv Virus Res ; 84: 345-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22682173

RESUMO

The current knowledge on viruses infecting asparagus (Asparagus officinalis) is reviewed. Over half a century, nine virus species belonging to the genera Ilarvirus, Cucumovirus, Nepovirus, Tobamovirus, Potexvirus, and Potyvirus have been found in this crop. The potyvirus Asparagus virus 1 (AV1) and the ilarvirus Asparagus virus 2 (AV2) are widespread and negatively affect the economic life of asparagus crops reducing yield and increasing the susceptibility to biotic and abiotic stress. The main properties and epidemiology of AV1 and AV2 as well as diagnostic techniques for their detection and identification are described. Minor viruses and control are briefly outlined.


Assuntos
Asparagus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Região do Mediterrâneo
15.
J Virol Methods ; 185(1): 43-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22710323

RESUMO

Tomato (Solanum lycopersicum L.) is a vegetable crop which is affected by many viruses and several viroids, causing significant economic loss. Their detection and identification is of critical importance for plant protection and quarantine and certification programs. The potential was examined of an array based on the Combimatrix platform for the detection of 37 viruses belonging to 13 families, one of which is unassigned, together with six pospiviroid species, genus Pospiviroid, family Pospiviroidae. More than 470 oligonucleotide probes (40-mer) were selected for the microarray diagnostic technique developed in this investigation. Most of the virus probes were highly specific and were able to identify tomato viruses. Most pospiviroid probes, however, were non-specific in terms of species, but were specific at the genus level as they hybridized to members of the genus Pospiviroid. Only one probe of the Tomato apical stem viroid was species specific. The repeatability and specificity of the Combimatrix method showed that it can be considered for routine diagnostic use in suspected tomato germplasm since it detected 37 viruses and one pospiviroid at the species level and 5-6 pospiviroids at the genus level. The estimated cost for testing of a single tomato virus is similar to or less than the cost of using ELISA.


Assuntos
Análise em Microsséries/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Solanum lycopersicum/virologia , Viroides/isolamento & purificação , Virologia/métodos , Vírus de Plantas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Viroides/genética
16.
J Virol Methods ; 168(1-2): 133-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20470828

RESUMO

A DNA microarray chip was developed for screening 10 major economically important tomato viruses from infected plants using "Combimatrix" platform 40-mer oligonucleotide probes. A total of 279 oligonucleotide virus probes were specific for simultaneous multiple detection, identification, differentiation and/or genotyping of each of the following tomato RNA viruses and/or strains and a virus satellite: Cucumber mosaic virus, Cucumber mosaic virus satellite RNA, Tomatoinfectiouschlorosisvirus, Tomato chlorosisvirus, Tomato spotted wilt virus, Pepino mosaic virus, Potato virus Y, Tobacco mosaic virus and Tomato mosaic virus. This selection included both positive and negative single-stranded RNA viruses. The single-stranded DNA viruses, Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus were detected but were not differentiated using probes designed from their coat protein genes. A sectored oligonucleotide microarray chip containing four sets of 2000 features (4 x 2 K) was designed. In this way, four samples were tested simultaneously in a hybridization event and 16 samples were analyzed by re-using the chip four times. The hybrids had low background signals. Many of the 40-mer oligonucleotide probes were specific for the detection and identification of each RNA viral species, RNA viral satellite and genotyping strains of Cucumber mosaic virus, Pepino mosaic virus and Potato virus Y. Universal probes were developed for strains of the last three viruses and also for the genus Tobamovirus which includes both Tobacco mosaicvirus and Tomato mosaic virus.


Assuntos
Vírus de DNA/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Solanum lycopersicum/virologia , Virologia/métodos , Vírus de DNA/classificação , Vírus de DNA/genética , Genótipo , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética
17.
J Virol Methods ; 147(1): 118-26, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17920703

RESUMO

Plum pox virus (PPV) is the most damaging viral pathogen of stone fruits. The detection and identification of its strains are therefore of critical importance to plant quarantine and certification programs. Existing methods to screen strains of PPV suffer from significant limitations such as the simultaneous detection and genotyping of several strains of PPV in samples infected with different isolates of the virus. A genomic strategy for PPV screening based on the viral nucleotide sequence was developed to enable the detection and genotyping of the virus from infected plant tissue or biological samples. The basis of this approach is a long 70-mer oligonucleotide DNA microarray capable of simultaneously detecting and genotyping PPV strains. Several 70-mer oligonucleotide probes were specific for the detection and genotyping of individual PPV isolates to their strains. Other probes were specific for the detection and identification of two or three PPV strains. One probe (universal), derived from the genome highly conserved 3' non-translated region, detected all individual strains of PPV. This universal PPV probe, combined with probes specific for each known strain, could be used for new PPV strain discovery. Finally, indirect fluorescent labeling of cDNA with cyanine after cDNA synthesis enhanced the sensitivity of the virus detection without the use of the PCR amplification step. The PPV microarray detected and identified efficiently the PPV strains in PPV-infected peach, apricot and Nicotiana benthamiana leaves. This PPV detection method is versatile, and enables the simultaneous detection of plant pathogens.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/isolamento & purificação , Sondas de DNA , Genótipo , Hibridização de Ácido Nucleico , Folhas de Planta/virologia , Vírus Eruptivo da Ameixa/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA